peerplays-fc/src/crypto/elliptic_mixed.cpp

196 lines
6 KiB
C++
Raw Normal View History

#include <fc/crypto/elliptic.hpp>
#include <fc/crypto/base58.hpp>
#include <fc/crypto/openssl.hpp>
#include <fc/fwd_impl.hpp>
#include <fc/exception/exception.hpp>
#include <fc/log/logger.hpp>
#include <assert.h>
#include <secp256k1.h>
namespace fc { namespace ecc {
namespace detail
{
static void init_lib() {
static int init_s = 0;
static int init_o = init_openssl();
if (!init_s) {
secp256k1_start(SECP256K1_START_VERIFY | SECP256K1_START_SIGN);
init_s = 1;
}
}
typedef public_key_data pub_data_type;
typedef private_key_secret priv_data_type;
#include "_elliptic_impl.cpp"
void public_key_impl::free_key()
{
if( _key != nullptr )
{
delete _key;
_key = nullptr;
}
}
public_key_data* public_key_impl::dup_key( const public_key_data* cpy )
{
return new public_key_data( *cpy );
}
void public_key_impl::copy_key( public_key_data* to, const public_key_data* from )
{
*to = *from;
}
void private_key_impl::free_key()
{
if( _key != nullptr )
{
delete _key;
_key = nullptr;
}
}
private_key_secret* private_key_impl::dup_key( const private_key_secret* cpy )
{
return new private_key_secret( *cpy );
}
void private_key_impl::copy_key( private_key_secret* to, const private_key_secret* from )
{
*to = *from;
}
}
public_key public_key::from_key_data( const public_key_data &data ) {
return public_key(data);
}
public_key public_key::add( const fc::sha256& digest )const
{
FC_ASSERT( my->_key != nullptr );
public_key_data new_key;
memcpy( new_key.begin(), my->_key->begin(), new_key.size() );
FC_ASSERT( secp256k1_ec_pubkey_tweak_add( (unsigned char*) new_key.begin(), new_key.size(), (unsigned char*) digest.data() ) );
return public_key( new_key );
}
std::string public_key::to_base58() const
{
FC_ASSERT( my->_key != nullptr );
return to_base58( *my->_key );
}
private_key private_key::regenerate( const fc::sha256& secret )
{
private_key self;
self.my->_key = new private_key_secret(secret);
return self;
}
fc::sha256 private_key::get_secret()const
{
FC_ASSERT( my->_key != nullptr );
return *my->_key;
}
private_key::private_key( EC_KEY* k )
{
my->_key = new private_key_secret( get_secret( k ) );
EC_KEY_free(k);
}
public_key_data public_key::serialize()const
{
FC_ASSERT( my->_key != nullptr );
return *my->_key;
}
public_key_point_data public_key::serialize_ecc_point()const
{
FC_ASSERT( my->_key != nullptr );
public_key_point_data dat;
unsigned int pk_len = my->_key->size();
memcpy( dat.begin(), my->_key->begin(), pk_len );
FC_ASSERT( secp256k1_ec_pubkey_decompress( (unsigned char *) dat.begin(), (int*) &pk_len ) );
FC_ASSERT( pk_len == dat.size() );
return dat;
}
public_key::public_key( const public_key_point_data& dat )
{
const char* front = &dat.data[0];
if( *front == 0 ){}
else
{
EC_KEY *key = o2i_ECPublicKey( nullptr, (const unsigned char**)&front, sizeof(dat) );
FC_ASSERT( key );
EC_KEY_set_conv_form( key, POINT_CONVERSION_COMPRESSED );
my->_key = new public_key_data();
i2o_ECPublicKey( key, (unsigned char**)&my->_key->data );
EC_KEY_free( key );
}
}
public_key::public_key( const public_key_data& dat )
{
my->_key = new public_key_data(dat);
}
public_key private_key::get_public_key()const
{
FC_ASSERT( my->_key != nullptr );
public_key_data pub;
unsigned int pk_len;
FC_ASSERT( secp256k1_ec_pubkey_create( (unsigned char*) pub.begin(), (int*) &pk_len, (unsigned char*) my->_key->data(), 1 ) );
FC_ASSERT( pk_len == pub.size() );
return public_key(pub);
}
fc::sha512 private_key::get_shared_secret( const public_key& other )const
{
FC_ASSERT( my->_key != nullptr );
FC_ASSERT( other.my->_key != nullptr );
public_key_data pub(*other.my->_key);
FC_ASSERT( secp256k1_ec_pubkey_tweak_mul( (unsigned char*) pub.begin(), pub.size(), (unsigned char*) my->_key->data() ) );
// ECDH_compute_key( (unsigned char*)&buf, sizeof(buf), EC_KEY_get0_public_key(other.my->_key), my->_key, ecies_key_derivation );
return fc::sha512::hash( pub.begin() + 1, pub.size() - 1 );
}
public_key::public_key( const compact_signature& c, const fc::sha256& digest, bool check_canonical )
{
int nV = c.data[0];
if (nV<27 || nV>=35)
FC_THROW_EXCEPTION( exception, "unable to reconstruct public key from signature" );
if( check_canonical )
{
FC_ASSERT( is_canonical( c ), "signature is not canonical" );
}
my->_key = new public_key_data();
unsigned int pk_len;
FC_ASSERT( secp256k1_ecdsa_recover_compact( (unsigned char*) digest.data(), (unsigned char*) c.begin() + 1, (unsigned char*) my->_key->begin(), (int*) &pk_len, 1, (*c.begin() - 27) & 3 ) );
FC_ASSERT( pk_len == my->_key->size() );
}
compact_signature private_key::sign_compact( const fc::sha256& digest )const
{
FC_ASSERT( my->_key != nullptr );
compact_signature result;
int recid;
do
{
FC_ASSERT( secp256k1_ecdsa_sign_compact( (unsigned char*) digest.data(), (unsigned char*) result.begin() + 1, (unsigned char*) my->_key->data(), NULL, NULL, &recid ));
} while( !public_key::is_canonical( result ) );
result.begin()[0] = 27 + 4 + recid;
return result;
}
}
}
#include "_elliptic_common.cpp"