peerplays-fc/src/thread/thread.cpp

525 lines
15 KiB
C++
Raw Normal View History

#include <fc/thread/thread.hpp>
#include <fc/io/sstream.hpp>
#include <fc/log/logger.hpp>
2012-09-08 02:50:37 +00:00
#include "thread_d.hpp"
2018-11-10 20:25:56 +00:00
#include <iostream>
#if defined(_MSC_VER) && !defined(NDEBUG)
# include <windows.h>
const DWORD MS_VC_EXCEPTION=0x406D1388;
#pragma pack(push,8)
typedef struct tagTHREADNAME_INFO
{
DWORD dwType; // Must be 0x1000.
LPCSTR szName; // Pointer to name (in user addr space).
DWORD dwThreadID; // Thread ID (-1=caller thread).
DWORD dwFlags; // Reserved for future use, must be zero.
} THREADNAME_INFO;
#pragma pack(pop)
static void set_thread_name(const char* threadName)
{
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = threadName;
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
}
}
#elif defined(__linux__)
# include <pthread.h>
static void set_thread_name(const char* threadName)
{
pthread_setname_np(pthread_self(), threadName);
}
#elif defined(__APPLE__) && !defined(NDEBUG)
# include <pthread.h>
static void set_thread_name(const char* threadName)
{
pthread_setname_np(threadName);
}
#else
static void set_thread_name(const char* threadName)
{
// do nothing in release mode
}
#endif
2012-09-08 02:50:37 +00:00
namespace fc {
2012-09-09 15:34:26 +00:00
const char* thread_name() {
return thread::current().name().c_str();
2012-09-09 23:44:49 +00:00
}
void* thread_ptr() {
return &thread::current();
2012-09-09 15:34:26 +00:00
}
2012-09-08 02:50:37 +00:00
2012-09-09 15:12:15 +00:00
thread*& current_thread() {
#ifdef _MSC_VER
2012-09-09 15:12:15 +00:00
static __declspec(thread) thread* t = NULL;
#else
2012-09-09 15:12:15 +00:00
static __thread thread* t = NULL;
#endif
2012-09-09 15:12:15 +00:00
return t;
}
thread::thread( const std::string& name, thread_idle_notifier* notifier ) {
promise<void>::ptr p(new promise<void>("thread start"));
boost::thread* t = new boost::thread( [this,p,name,notifier]() {
2012-09-08 02:50:37 +00:00
try {
set_thread_name(name.c_str()); // set thread's name for the debugger to display
this->my = new thread_d( *this, notifier );
cleanup();
2012-09-09 15:12:15 +00:00
current_thread() = this;
2012-09-08 02:50:37 +00:00
p->set_value();
exec();
} catch ( fc::exception& e ) {
2018-10-06 09:06:35 +00:00
if( !p->ready() )
{
wlog( "unhandled exception" );
p->set_exception( e.dynamic_copy_exception() );
}
else
{ // possibly shutdown?
std::cerr << "unhandled exception in thread '" << name << "'\n";
std::cerr << e.to_detail_string( log_level::warn );
}
2012-09-08 02:50:37 +00:00
} catch ( ... ) {
2018-10-06 09:06:35 +00:00
if( !p->ready() )
{
wlog( "unhandled exception" );
p->set_exception( std::make_shared<unhandled_exception>( FC_LOG_MESSAGE( warn, "unhandled exception: ${diagnostic}", ("diagnostic",boost::current_exception_diagnostic_information()) ) ) );
}
else
{ // possibly shutdown?
std::cerr << "unhandled exception in thread '" << name << "'\n";
std::cerr << boost::current_exception_diagnostic_information() << "\n";
}
2012-09-08 02:50:37 +00:00
}
} );
p->wait();
my->boost_thread = t;
my->name = name;
2012-09-08 02:50:37 +00:00
}
thread::thread( thread_d* ) {
my = new thread_d(*this);
}
thread::~thread() {
if( my )
2018-02-02 12:29:46 +00:00
quit();
delete my;
2012-09-08 02:50:37 +00:00
}
thread& thread::current() {
if( !current_thread() )
current_thread() = new thread((thread_d*)0);
2012-09-09 15:12:15 +00:00
return *current_thread();
2012-09-08 02:50:37 +00:00
}
2018-02-02 12:29:46 +00:00
void thread::cleanup() {
if ( current_thread() ) {
delete current_thread();
current_thread() = nullptr;
}
2018-02-02 12:29:46 +00:00
}
const string& thread::name()const
{
return my->name;
}
2019-04-04 11:46:38 +00:00
void thread::set_name( const std::string& n )
{
if (!is_current())
{
async([this,n](){ set_name(n); }, "set_name").wait();
return;
}
my->name = n;
set_thread_name(my->name.c_str()); // set thread's name for the debugger to display
}
const char* thread::current_task_desc() const
{
if (my->current && my->current->cur_task)
return my->current->cur_task->get_desc();
return NULL;
}
2019-04-04 11:46:38 +00:00
void thread::debug( const std::string& d ) { /*my->debug(d);*/ }
2012-09-08 02:50:37 +00:00
#if defined(__linux__) || defined(__APPLE__)
#include <signal.h>
#endif
void thread::signal(int sig)
{
#if defined(__linux__) || defined(__APPLE__)
pthread_kill( my->boost_thread->native_handle(), sig );
#endif
}
void thread::quit()
{
//if quitting from a different thread, start quit task on thread.
//If we have and know our attached boost thread, wait for it to finish, then return.
2018-02-02 12:29:46 +00:00
if( !is_current() )
{
2018-02-02 12:29:46 +00:00
auto t = my->boost_thread;
async( [this](){quit();}, "thread::quit" );
2018-02-02 12:29:46 +00:00
if( t )
t->join();
return;
}
2018-02-02 12:29:46 +00:00
my->done = true;
// We are quiting from our own thread...
2012-09-08 02:50:37 +00:00
// break all promises, thread quit!
while( my->blocked )
{
fc::context* cur = my->blocked;
while( cur )
{
2012-09-08 02:50:37 +00:00
fc::context* n = cur->next;
// this will move the context into the ready list.
cur->set_exception_on_blocking_promises( std::make_shared<canceled_exception>(FC_LOG_MESSAGE(error, "cancellation reason: thread quitting")) );
2012-09-08 02:50:37 +00:00
cur = n;
}
if( my->blocked )
debug( "on quit" );
}
BOOST_ASSERT( my->blocked == 0 );
2012-09-08 02:50:37 +00:00
for (task_base* unstarted_task : my->task_pqueue)
unstarted_task->set_exception(std::make_shared<canceled_exception>(FC_LOG_MESSAGE(error, "cancellation reason: thread quitting")));
my->task_pqueue.clear();
2012-09-08 02:50:37 +00:00
for (task_base* scheduled_task : my->task_sch_queue)
scheduled_task->set_exception(std::make_shared<canceled_exception>(FC_LOG_MESSAGE(error, "cancellation reason: thread quitting")));
my->task_sch_queue.clear();
// move all sleep tasks to ready
for( uint32_t i = 0; i < my->sleep_pqueue.size(); ++i )
my->add_context_to_ready_list( my->sleep_pqueue[i] );
my->sleep_pqueue.clear();
// move all idle tasks to ready
fc::context* cur = my->pt_head;
while( cur )
{
fc::context* n = cur->next;
cur->next = 0;
my->add_context_to_ready_list( cur );
cur = n;
}
// mark all ready tasks (should be everyone)... as canceled
for (fc::context* ready_context : my->ready_heap)
ready_context->canceled = true;
// now that we have poked all fibers... switch to the next one and
// let them all quit.
while (!my->ready_heap.empty())
{
my->start_next_fiber(true);
my->check_for_timeouts();
}
my->clear_free_list();
my->cleanup_thread_specific_data();
}
void thread::exec()
{
if( !my->current )
my->current = new fc::context(&fc::thread::current());
try
{
my->process_tasks();
}
catch( canceled_exception& e )
{
2016-02-15 16:59:28 +00:00
dlog( "thread canceled: ${e}", ("e", e.to_detail_string()) );
}
2012-09-08 02:50:37 +00:00
delete my->current;
my->current = 0;
}
bool thread::is_running()const
{
2012-09-08 02:50:37 +00:00
return !my->done;
}
priority thread::current_priority()const
{
2012-09-08 02:50:37 +00:00
BOOST_ASSERT(my);
if( my->current )
return my->current->prio;
2012-09-08 02:50:37 +00:00
return priority();
}
void thread::yield(bool reschedule)
{
2012-09-08 02:50:37 +00:00
my->check_fiber_exceptions();
my->start_next_fiber(reschedule);
my->check_fiber_exceptions();
}
void thread::sleep_until( const time_point& tp )
{
if( tp <= (time_point::now()+fc::microseconds(10000)) )
yield(true);
my->yield_until( tp, false );
2012-09-08 02:50:37 +00:00
}
int thread::wait_any_until( std::vector<promise_base::ptr>&& p, const time_point& timeout) {
for( size_t i = 0; i < p.size(); ++i )
if( p[i]->ready() )
return i;
if( timeout < time_point::now() )
{
fc::stringstream ss;
for( auto i = p.begin(); i != p.end(); ++i )
ss << (*i)->get_desc() << ", ";
2012-09-08 02:50:37 +00:00
FC_THROW_EXCEPTION( timeout_exception, "${task}", ("task",ss.str()) );
2012-12-31 16:06:10 +00:00
}
if( !my->current )
my->current = new fc::context(&fc::thread::current());
for( uint32_t i = 0; i < p.size(); ++i )
my->current->add_blocking_promise(p[i].get(),false);
2012-09-08 02:50:37 +00:00
// if not max timeout, added to sleep pqueue
if( timeout != time_point::maximum() )
{
2012-09-08 02:50:37 +00:00
my->current->resume_time = timeout;
my->sleep_pqueue.push_back(my->current);
std::push_heap( my->sleep_pqueue.begin(),
my->sleep_pqueue.end(),
2012-09-08 02:50:37 +00:00
sleep_priority_less() );
}
2012-09-08 02:50:37 +00:00
my->add_to_blocked( my->current );
my->start_next_fiber();
for( auto i = p.begin(); i != p.end(); ++i )
my->current->remove_blocking_promise(i->get());
2012-09-08 02:50:37 +00:00
my->check_fiber_exceptions();
for( uint32_t i = 0; i < p.size(); ++i )
if( p[i]->ready() )
return i;
2012-09-08 02:50:37 +00:00
return -1;
}
void thread::async_task( task_base* t, const priority& p ) {
async_task( t, p, time_point::min() );
2012-09-08 02:50:37 +00:00
}
2012-09-11 03:13:31 +00:00
void thread::poke() {
boost::unique_lock<boost::mutex> lock(my->task_ready_mutex);
my->task_ready.notify_one();
}
void thread::async_task( task_base* t, const priority& p, const time_point& tp ) {
2012-09-25 21:45:28 +00:00
assert(my);
2012-09-23 01:26:13 +00:00
t->_when = tp;
2012-09-08 02:50:37 +00:00
task_base* stale_head = my->task_in_queue.load(boost::memory_order_relaxed);
do { t->_next = stale_head;
}while( !my->task_in_queue.compare_exchange_weak( stale_head, t, boost::memory_order_release ) );
// Because only one thread can post the 'first task', only that thread will attempt
// to aquire the lock and therefore there should be no contention on this lock except
// when *this thread is about to block on a wait condition.
if( this != &current() && !stale_head ) {
2012-09-08 02:50:37 +00:00
boost::unique_lock<boost::mutex> lock(my->task_ready_mutex);
my->task_ready.notify_one();
}
}
void yield() {
thread::current().yield();
}
void usleep( const microseconds& u ) {
thread::current().sleep_until( time_point::now() + u);
}
void sleep_until( const time_point& tp ) {
thread::current().sleep_until(tp);
}
void exec()
{
2012-09-08 02:50:37 +00:00
return thread::current().exec();
}
int wait_any( std::vector<promise_base::ptr>&& v, const microseconds& timeout_us )
{
2019-04-04 11:46:38 +00:00
return thread::current().wait_any_until( std::move(v), time_point::now() + timeout_us );
2012-09-08 02:50:37 +00:00
}
int wait_any_until( std::vector<promise_base::ptr>&& v, const time_point& tp )
{
2019-04-04 11:46:38 +00:00
return thread::current().wait_any_until( std::move(v), tp );
2012-09-08 02:50:37 +00:00
}
void thread::wait_until( promise_base::ptr&& p, const time_point& timeout )
{
if( p->ready() )
return;
if( timeout < time_point::now() )
FC_THROW_EXCEPTION( timeout_exception, "${task}", ("task", p->get_desc()) );
if( !my->current )
my->current = new fc::context(&fc::thread::current());
my->current->add_blocking_promise(p.get(), true);
2012-09-08 02:50:37 +00:00
// if not max timeout, added to sleep pqueue
if( timeout != time_point::maximum() )
{
2012-09-08 02:50:37 +00:00
my->current->resume_time = timeout;
my->sleep_pqueue.push_back(my->current);
std::push_heap( my->sleep_pqueue.begin(),
my->sleep_pqueue.end(),
sleep_priority_less() );
2012-09-08 02:50:37 +00:00
}
my->add_to_blocked( my->current );
my->start_next_fiber();
my->current->remove_blocking_promise(p.get());
my->check_fiber_exceptions();
}
void thread::notify( const promise_base::ptr& p )
{
2012-09-08 02:50:37 +00:00
BOOST_ASSERT(p->ready());
if( !is_current() )
{
2012-09-23 06:01:27 +00:00
this->async( [=](){ notify(p); }, "notify", priority::max() );
2012-09-08 02:50:37 +00:00
return;
}
// TODO: store a list of blocked contexts with the promise
2012-09-08 02:50:37 +00:00
// to accelerate the lookup.... unless it introduces contention...
2012-09-08 02:50:37 +00:00
// iterate over all blocked contexts
fc::context* cur_blocked = my->blocked;
fc::context* prev_blocked = 0;
while( cur_blocked )
{
// if the blocked context is waiting on this promise
if( cur_blocked->try_unblock( p.get() ) )
{
2012-09-08 02:50:37 +00:00
// remove it from the blocked list.
// remove this context from the sleep queue...
for( uint32_t i = 0; i < my->sleep_pqueue.size(); ++i )
{
if( my->sleep_pqueue[i] == cur_blocked )
{
2012-09-08 02:50:37 +00:00
my->sleep_pqueue[i]->blocking_prom.clear();
my->sleep_pqueue[i] = my->sleep_pqueue.back();
my->sleep_pqueue.pop_back();
std::make_heap( my->sleep_pqueue.begin(),my->sleep_pqueue.end(), sleep_priority_less() );
break;
}
}
auto cur = cur_blocked;
if( prev_blocked )
{
prev_blocked->next_blocked = cur_blocked->next_blocked;
2012-09-08 02:50:37 +00:00
cur_blocked = prev_blocked->next_blocked;
}
else
{
my->blocked = cur_blocked->next_blocked;
2012-09-08 02:50:37 +00:00
cur_blocked = my->blocked;
}
cur->next_blocked = 0;
my->add_context_to_ready_list( cur );
}
else
{ // goto the next blocked task
2012-09-08 02:50:37 +00:00
prev_blocked = cur_blocked;
cur_blocked = cur_blocked->next_blocked;
}
}
}
bool thread::is_current()const
{
2012-09-08 21:37:25 +00:00
return this == &current();
}
2012-09-08 02:50:37 +00:00
void thread::notify_task_has_been_canceled()
{
async( [this](){ my->notify_task_has_been_canceled(); }, "notify_task_has_been_canceled", priority::max() );
}
void thread::unblock(fc::context* c)
{
my->unblock(c);
}
namespace detail {
idle_guard::idle_guard( thread_d* t ) : notifier(t->notifier)
{
if( notifier )
{
task_base* work = notifier->idle();
if( work )
{
task_base* stale_head = t->task_in_queue.load(boost::memory_order_relaxed);
do {
work->_next = stale_head;
} while( !t->task_in_queue.compare_exchange_weak( stale_head, work, boost::memory_order_release ) );
}
}
}
idle_guard::~idle_guard()
{
if( notifier ) notifier->busy();
}
}
#ifdef _MSC_VER
/* support for providing a structured exception handler for async tasks */
namespace detail
{
unhandled_exception_filter_type unhandled_structured_exception_filter = nullptr;
}
void set_unhandled_structured_exception_filter(unhandled_exception_filter_type new_filter)
{
detail::unhandled_structured_exception_filter = new_filter;
}
unhandled_exception_filter_type get_unhandled_structured_exception_filter()
{
return detail::unhandled_structured_exception_filter;
}
#endif // _MSC_VER
} // end namespace fc