Intermediate version

This commit is contained in:
Peter Conrad 2015-03-07 14:48:45 +01:00
parent f17444d90b
commit 34af5d98ec
5 changed files with 331 additions and 627 deletions

View file

@ -24,7 +24,7 @@ SET( DEFAULT_LIBRARY_INSTALL_DIR lib/ )
SET( DEFAULT_EXECUTABLE_INSTALL_DIR bin/ )
SET( CMAKE_DEBUG_POSTFIX _debug )
SET( BUILD_SHARED_LIBS NO )
SET( ECC_IMPL openssl ) # openssl or secp256k1
SET( ECC_IMPL secp256k1 ) # openssl or secp256k1
set(platformBitness 32)
if(CMAKE_SIZEOF_VOID_P EQUAL 8)
@ -37,6 +37,10 @@ SET(BOOST_COMPONENTS)
LIST(APPEND BOOST_COMPONENTS thread date_time system filesystem program_options signals serialization chrono unit_test_framework context locale iostreams)
SET( Boost_USE_STATIC_LIBS ON CACHE STRING "ON or OFF" )
IF( ECC_IMPL STREQUAL secp256k1 )
SET( ECC_LIB secp256k1 )
ENDIF( ECC_IMPL STREQUAL secp256k1 )
IF( WIN32 )
MESSAGE(STATUS "Configuring fc to build on Win32")
@ -151,6 +155,7 @@ set( fc_sources
src/crypto/sha512.cpp
src/crypto/dh.cpp
src/crypto/blowfish.cpp
src/crypto/elliptic_common.cpp
src/crypto/elliptic_${ECC_IMPL}.cpp
src/crypto/rand.cpp
src/crypto/salsa20.cpp
@ -257,7 +262,7 @@ target_include_directories(fc
)
#target_link_libraries( fc PUBLIC easylzma_static scrypt udt ${Boost_LIBRARIES} ${OPENSSL_LIBRARIES} ${ZLIB_LIBRARIES} ${PLATFORM_SPECIFIC_LIBS} ${RPCRT4} ${CMAKE_DL_LIBS} ${rt_library})
target_link_libraries( fc PUBLIC easylzma_static udt ${Boost_LIBRARIES} ${OPENSSL_LIBRARIES} ${ZLIB_LIBRARIES} ${PLATFORM_SPECIFIC_LIBS} ${RPCRT4} ${CMAKE_DL_LIBS} ${rt_library} ${readline_libraries})
target_link_libraries( fc PUBLIC easylzma_static udt ${Boost_LIBRARIES} ${OPENSSL_LIBRARIES} ${ZLIB_LIBRARIES} ${PLATFORM_SPECIFIC_LIBS} ${RPCRT4} ${CMAKE_DL_LIBS} ${rt_library} ${readline_libraries} ${ECC_LIB})
IF(NOT Boost_UNIT_TEST_FRAMEWORK_LIBRARY MATCHES "\\.(a|lib)$")
IF(WIN32)

View file

@ -1,5 +1,6 @@
#pragma once
#include <fc/crypto/bigint.hpp>
#include <fc/crypto/openssl.hpp>
#include <fc/crypto/sha256.hpp>
#include <fc/crypto/sha512.hpp>
#include <fc/fwd.hpp>
@ -43,7 +44,7 @@ namespace fc {
public_key( const compact_signature& c, const fc::sha256& digest, bool check_canonical = true );
bool valid()const;
public_key mult( const fc::sha256& offset );
public_key mult( const fc::sha256& offset )const;
public_key add( const fc::sha256& offset )const;
public_key( public_key&& pk );
@ -61,10 +62,13 @@ namespace fc {
/// Allows to convert current public key object into base58 number.
std::string to_base58() const;
static std::string to_base58( const public_key_data &key );
static public_key from_base58( const std::string& b58 );
private:
friend class private_key;
static public_key from_key_data( const public_key_data& v );
static void is_canonical( const compact_signature& c );
fc::fwd<detail::public_key_impl,8> my;
};
@ -123,6 +127,8 @@ namespace fc {
}
private:
private_key( EC_KEY* k );
static fc::sha256 get_secret( const EC_KEY * const k );
fc::fwd<detail::private_key_impl,8> my;
};
} // namespace ecc

View file

@ -0,0 +1,118 @@
#include <fc/crypto/elliptic.hpp>
#include <fc/crypto/base58.hpp>
#include <fc/crypto/openssl.hpp>
#include <fc/fwd_impl.hpp>
#include <fc/exception/exception.hpp>
#include <fc/log/logger.hpp>
#include <assert.h>
namespace fc { namespace ecc {
std::string public_key::to_base58( const public_key_data &key )
{
uint32_t check = (uint32_t)sha256::hash(key.data, sizeof(key))._hash[0];
assert(key.size() + sizeof(check) == 37);
array<char, 37> data;
memcpy(data.data, key.begin(), key.size());
memcpy(data.begin() + key.size(), (const char*)&check, sizeof(check));
return fc::to_base58(data.begin(), data.size());
}
public_key public_key::from_base58( const std::string& b58 )
{
array<char, 37> data;
size_t s = fc::from_base58(b58, (char*)&data, sizeof(data) );
FC_ASSERT( s == sizeof(data) );
public_key_data key;
uint32_t check = (uint32_t)sha256::hash(data.data, sizeof(key))._hash[0];
FC_ASSERT( memcmp( (char*)&check, data.data + sizeof(key), sizeof(check) ) == 0 );
memcpy( (char*)key.data, data.data, sizeof(key) );
return from_key_data(key);
}
void public_key::is_canonical( const compact_signature& c ) {
FC_ASSERT( !(c.data[1] & 0x80), "signature is not canonical" );
FC_ASSERT( !(c.data[1] == 0 && !(c.data[2] & 0x80)), "signature is not canonical" );
FC_ASSERT( !(c.data[33] & 0x80), "signature is not canonical" );
FC_ASSERT( !(c.data[33] == 0 && !(c.data[34] & 0x80)), "signature is not canonical" );
}
private_key private_key::generate_from_seed( const fc::sha256& seed, const fc::sha256& offset )
{
ssl_bignum z;
BN_bin2bn((unsigned char*)&offset, sizeof(offset), z);
ec_group group(EC_GROUP_new_by_curve_name(NID_secp256k1));
bn_ctx ctx(BN_CTX_new());
ssl_bignum order;
EC_GROUP_get_order(group, order, ctx);
// secexp = (seed + z) % order
ssl_bignum secexp;
BN_bin2bn((unsigned char*)&seed, sizeof(seed), secexp);
BN_add(secexp, secexp, z);
BN_mod(secexp, secexp, order, ctx);
fc::sha256 secret;
assert(BN_num_bytes(secexp) <= int64_t(sizeof(secret)));
auto shift = sizeof(secret) - BN_num_bytes(secexp);
BN_bn2bin(secexp, ((unsigned char*)&secret)+shift);
return regenerate( secret );
}
fc::sha256 private_key::get_secret( const EC_KEY * const k )
{
if( !k )
{
return fc::sha256();
}
fc::sha256 sec;
const BIGNUM* bn = EC_KEY_get0_private_key(k);
if( bn == NULL )
{
FC_THROW_EXCEPTION( exception, "get private key failed" );
}
int nbytes = BN_num_bytes(bn);
BN_bn2bin(bn, &((unsigned char*)&sec)[32-nbytes] );
return sec;
}
private_key private_key::generate()
{
EC_KEY* k = EC_KEY_new_by_curve_name( NID_secp256k1 );
if( !k ) FC_THROW_EXCEPTION( exception, "Unable to generate EC key" );
if( !EC_KEY_generate_key( k ) )
{
FC_THROW_EXCEPTION( exception, "ecc key generation error" );
}
return private_key( k );
}
}
void to_variant( const ecc::private_key& var, variant& vo )
{
vo = var.get_secret();
}
void from_variant( const variant& var, ecc::private_key& vo )
{
fc::sha256 sec;
from_variant( var, sec );
vo = ecc::private_key::regenerate(sec);
}
void to_variant( const ecc::public_key& var, variant& vo )
{
vo = var.serialize();
}
void from_variant( const variant& var, ecc::public_key& vo )
{
ecc::public_key_data dat;
from_variant( var, dat );
vo = ecc::public_key(dat);
}
}

View file

@ -174,23 +174,11 @@ namespace fc { namespace ecc {
return(ok);
}
/*
public_key::public_key()
:my( new detail::public_key_impl() )
{
public_key public_key::from_key_data( const public_key_data &data ) {
return public_key(data);
}
public_key::public_key( fc::bigint pub_x, fc::bigint pub_y )
:my( new detail::public_key_impl() )
{
}
public_key::~public_key()
{
}
*/
public_key public_key::mult( const fc::sha256& digest )
public_key public_key::mult( const fc::sha256& digest ) const
{
// get point from this public key
const EC_POINT* master_pub = EC_KEY_get0_public_key( my->_key );
@ -265,53 +253,12 @@ namespace fc { namespace ecc {
std::string public_key::to_base58() const
{
public_key_data key = serialize();
uint32_t check = (uint32_t)sha256::hash(key.data, sizeof(key))._hash[0];
assert(key.size() + sizeof(check) == 37);
array<char, 37> data;
memcpy(data.data, key.begin(), key.size());
memcpy(data.begin() + key.size(), (const char*)&check, sizeof(check));
return fc::to_base58(data.begin(), data.size());
}
public_key public_key::from_base58( const std::string& b58 )
{
array<char, 37> data;
size_t s = fc::from_base58(b58, (char*)&data, sizeof(data) );
FC_ASSERT( s == sizeof(data) );
public_key_data key;
uint32_t check = (uint32_t)sha256::hash(data.data, sizeof(key))._hash[0];
FC_ASSERT( memcmp( (char*)&check, data.data + sizeof(key), sizeof(check) ) == 0 );
memcpy( (char*)key.data, data.data, sizeof(key) );
return public_key(key);
return to_base58( key );
}
private_key::private_key()
{}
private_key private_key::generate_from_seed( const fc::sha256& seed, const fc::sha256& offset )
{
ssl_bignum z;
BN_bin2bn((unsigned char*)&offset, sizeof(offset), z);
ec_group group(EC_GROUP_new_by_curve_name(NID_secp256k1));
bn_ctx ctx(BN_CTX_new());
ssl_bignum order;
EC_GROUP_get_order(group, order, ctx);
// secexp = (seed + z) % order
ssl_bignum secexp;
BN_bin2bn((unsigned char*)&seed, sizeof(seed), secexp);
BN_add(secexp, secexp, z);
BN_mod(secexp, secexp, order, ctx);
fc::sha256 secret;
assert(BN_num_bytes(secexp) <= int64_t(sizeof(secret)));
auto shift = sizeof(secret) - BN_num_bytes(secexp);
BN_bn2bin(secexp, ((unsigned char*)&secret)+shift);
return regenerate( secret );
}
private_key private_key::regenerate( const fc::sha256& secret )
{
private_key self;
@ -330,45 +277,12 @@ namespace fc { namespace ecc {
fc::sha256 private_key::get_secret()const
{
if( !my->_key )
{
return fc::sha256();
}
fc::sha256 sec;
const BIGNUM* bn = EC_KEY_get0_private_key(my->_key);
if( bn == NULL )
{
FC_THROW_EXCEPTION( exception, "get private key failed" );
}
int nbytes = BN_num_bytes(bn);
BN_bn2bin(bn, &((unsigned char*)&sec)[32-nbytes] );
return sec;
return get_secret( my->_key );
}
private_key private_key::generate()
private_key::private_key( EC_KEY* k )
{
private_key self;
EC_KEY* k = EC_KEY_new_by_curve_name( NID_secp256k1 );
if( !k ) FC_THROW_EXCEPTION( exception, "Unable to generate EC key" );
self.my->_key = k;
if( !EC_KEY_generate_key( self.my->_key ) )
{
FC_THROW_EXCEPTION( exception, "ecc key generation error" );
}
#if 0
= bigint( EC_KEY_get0_private_key( k );
EC_POINT* pub = EC_KEY_get0_public_key( k );
EC_GROUP* group = EC_KEY_get0_group( k );
EC_POINT_get_affine_coordinates_GFp( group, pub, self.my->_pub_x.get(), self.my->_pub_y.get(), nullptr/*ctx*/ );
EC_KEY_free(k);
#endif
return self;
my->_key = k;
}
// signature private_key::sign( const fc::sha256& digest )const
@ -422,9 +336,11 @@ namespace fc { namespace ecc {
public_key::public_key()
{
}
public_key::~public_key()
{
}
public_key::public_key( const public_key_point_data& dat )
{
const char* front = &dat.data[0];
@ -493,10 +409,7 @@ namespace fc { namespace ecc {
if( check_canonical )
{
FC_ASSERT( !(c.data[1] & 0x80), "signature is not canonical" );
FC_ASSERT( !(c.data[1] == 0 && !(c.data[2] & 0x80)), "signature is not canonical" );
FC_ASSERT( !(c.data[33] & 0x80), "signature is not canonical" );
FC_ASSERT( !(c.data[33] == 0 && !(c.data[34] & 0x80)), "signature is not canonical" );
is_canonical( c );
}
my->_key = EC_KEY_new_by_curve_name(NID_secp256k1);
@ -595,18 +508,22 @@ namespace fc { namespace ecc {
pk.my->_key = nullptr;
return *this;
}
public_key::public_key( const public_key& pk )
:my(pk.my)
{
}
public_key::public_key( public_key&& pk )
:my( fc::move( pk.my) )
{
}
private_key::private_key( const private_key& pk )
:my(pk.my)
{
}
private_key::private_key( private_key&& pk )
:my( fc::move( pk.my) )
{
@ -640,29 +557,5 @@ namespace fc { namespace ecc {
my->_key = EC_KEY_dup(pk.my->_key);
return *this;
}
}
void to_variant( const ecc::private_key& var, variant& vo )
{
vo = var.get_secret();
}
void from_variant( const variant& var, ecc::private_key& vo )
{
fc::sha256 sec;
from_variant( var, sec );
vo = ecc::private_key::regenerate(sec);
}
void to_variant( const ecc::public_key& var, variant& vo )
{
vo = var.serialize();
}
void from_variant( const variant& var, ecc::public_key& vo )
{
ecc::public_key_data dat;
from_variant( var, dat );
vo = ecc::public_key(dat);
}
}

View file

@ -8,472 +8,277 @@
#include <fc/log/logger.hpp>
#include <assert.h>
#include <secp256k1.h>
namespace fc { namespace ecc {
namespace detail
{
static void init_lib() {
static int init_s = 0;
static int init_o = init_openssl();
if (!init_s) {
secp256k1_start(SECP256K1_START_VERIFY | SECP256K1_START_SIGN);
init_s = 1;
}
}
static public_key_data empty_key;
class public_key_impl
{
public:
public_key_impl()
:_key(nullptr)
{
static int init = init_openssl();
init_lib();
}
~public_key_impl()
{
if( _key != nullptr )
{
EC_KEY_free(_key);
}
}
public_key_impl( const public_key_impl& cpy )
{
_key = cpy._key ? EC_KEY_dup( cpy._key ) : nullptr;
_key = cpy._key;
}
EC_KEY* _key;
public_key_data _key;
};
class private_key_impl
{
public:
private_key_impl()
:_key(nullptr)
{
static int init = init_openssl();
}
~private_key_impl()
{
if( _key != nullptr )
{
EC_KEY_free(_key);
}
init_lib();
}
private_key_impl( const private_key_impl& cpy )
{
_key = cpy._key ? EC_KEY_dup( cpy._key ) : nullptr;
_key = cpy._key;
}
EC_KEY* _key;
private_key_secret _key;
};
}
static void * ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen)
{
if (*olen < SHA512_DIGEST_LENGTH) {
return NULL;
}
*olen = SHA512_DIGEST_LENGTH;
return (void*)SHA512((const unsigned char*)input, ilen, (unsigned char*)output);
// static void * ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen)
// {
// if (*olen < SHA512_DIGEST_LENGTH) {
// return NULL;
// }
// *olen = SHA512_DIGEST_LENGTH;
// return (void*)SHA512((const unsigned char*)input, ilen, (unsigned char*)output);
// }
//
// // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
// // recid selects which key is recovered
// // if check is non-zero, additional checks are performed
// static int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
// {
// if (!eckey) FC_THROW_EXCEPTION( exception, "null key" );
//
// int ret = 0;
// BN_CTX *ctx = NULL;
//
// BIGNUM *x = NULL;
// BIGNUM *e = NULL;
// BIGNUM *order = NULL;
// BIGNUM *sor = NULL;
// BIGNUM *eor = NULL;
// BIGNUM *field = NULL;
// EC_POINT *R = NULL;
// EC_POINT *O = NULL;
// EC_POINT *Q = NULL;
// BIGNUM *rr = NULL;
// BIGNUM *zero = NULL;
// int n = 0;
// int i = recid / 2;
//
// const EC_GROUP *group = EC_KEY_get0_group(eckey);
// if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
// BN_CTX_start(ctx);
// order = BN_CTX_get(ctx);
// if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
// x = BN_CTX_get(ctx);
// if (!BN_copy(x, order)) { ret=-1; goto err; }
// if (!BN_mul_word(x, i)) { ret=-1; goto err; }
// if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
// field = BN_CTX_get(ctx);
// if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
// if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
// if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
// if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
// if (check)
// {
// if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
// if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
// if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
// }
// if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
// n = EC_GROUP_get_degree(group);
// e = BN_CTX_get(ctx);
// if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
// if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
// zero = BN_CTX_get(ctx);
// if (!BN_zero(zero)) { ret=-1; goto err; }
// if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
// rr = BN_CTX_get(ctx);
// if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
// sor = BN_CTX_get(ctx);
// if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
// eor = BN_CTX_get(ctx);
// if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
// if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
// if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
//
// ret = 1;
//
// err:
// if (ctx) {
// BN_CTX_end(ctx);
// BN_CTX_free(ctx);
// }
// if (R != NULL) EC_POINT_free(R);
// if (O != NULL) EC_POINT_free(O);
// if (Q != NULL) EC_POINT_free(Q);
// return ret;
// }
//
//
// int static inline EC_KEY_regenerate_key(EC_KEY *eckey, const BIGNUM *priv_key)
// {
// int ok = 0;
// BN_CTX *ctx = NULL;
// EC_POINT *pub_key = NULL;
//
// if (!eckey) return 0;
//
// const EC_GROUP *group = EC_KEY_get0_group(eckey);
//
// if ((ctx = BN_CTX_new()) == NULL)
// goto err;
//
// pub_key = EC_POINT_new(group);
//
// if (pub_key == NULL)
// goto err;
//
// if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
// goto err;
//
// EC_KEY_set_private_key(eckey,priv_key);
// EC_KEY_set_public_key(eckey,pub_key);
//
// ok = 1;
//
// err:
//
// if (pub_key) EC_POINT_free(pub_key);
// if (ctx != NULL) BN_CTX_free(ctx);
//
// return(ok);
// }
public_key public_key::from_key_data( const public_key_data &data ) {
return public_key(data);
}
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
// recid selects which key is recovered
// if check is non-zero, additional checks are performed
static int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
public_key public_key::mult( const fc::sha256& digest )const
{
if (!eckey) FC_THROW_EXCEPTION( exception, "null key" );
int ret = 0;
BN_CTX *ctx = NULL;
BIGNUM *x = NULL;
BIGNUM *e = NULL;
BIGNUM *order = NULL;
BIGNUM *sor = NULL;
BIGNUM *eor = NULL;
BIGNUM *field = NULL;
EC_POINT *R = NULL;
EC_POINT *O = NULL;
EC_POINT *Q = NULL;
BIGNUM *rr = NULL;
BIGNUM *zero = NULL;
int n = 0;
int i = recid / 2;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
BN_CTX_start(ctx);
order = BN_CTX_get(ctx);
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
x = BN_CTX_get(ctx);
if (!BN_copy(x, order)) { ret=-1; goto err; }
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
field = BN_CTX_get(ctx);
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
if (check)
{
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
}
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
n = EC_GROUP_get_degree(group);
e = BN_CTX_get(ctx);
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
zero = BN_CTX_get(ctx);
if (!BN_zero(zero)) { ret=-1; goto err; }
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
rr = BN_CTX_get(ctx);
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
sor = BN_CTX_get(ctx);
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
eor = BN_CTX_get(ctx);
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
ret = 1;
err:
if (ctx) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (R != NULL) EC_POINT_free(R);
if (O != NULL) EC_POINT_free(O);
if (Q != NULL) EC_POINT_free(Q);
return ret;
public_key_data new_key;
memcpy( new_key.begin(), my->_key.begin(), new_key.size() );
FC_ASSERT( secp256k1_ec_pubkey_tweak_mul( (unsigned char*) new_key.begin(), new_key.size(), (unsigned char*) digest.data() ) );
return public_key( new_key );
}
int static inline EC_KEY_regenerate_key(EC_KEY *eckey, const BIGNUM *priv_key)
{
int ok = 0;
BN_CTX *ctx = NULL;
EC_POINT *pub_key = NULL;
if (!eckey) return 0;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL)
goto err;
pub_key = EC_POINT_new(group);
if (pub_key == NULL)
goto err;
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
goto err;
EC_KEY_set_private_key(eckey,priv_key);
EC_KEY_set_public_key(eckey,pub_key);
ok = 1;
err:
if (pub_key) EC_POINT_free(pub_key);
if (ctx != NULL) BN_CTX_free(ctx);
return(ok);
}
/*
public_key::public_key()
:my( new detail::public_key_impl() )
{
}
public_key::public_key( fc::bigint pub_x, fc::bigint pub_y )
:my( new detail::public_key_impl() )
{
}
public_key::~public_key()
{
}
*/
public_key public_key::mult( const fc::sha256& digest )
{
// get point from this public key
const EC_POINT* master_pub = EC_KEY_get0_public_key( my->_key );
ec_group group(EC_GROUP_new_by_curve_name(NID_secp256k1));
ssl_bignum z;
BN_bin2bn((unsigned char*)&digest, sizeof(digest), z);
// multiply by digest
ssl_bignum one;
BN_one(one);
bn_ctx ctx(BN_CTX_new());
ec_point result(EC_POINT_new(group));
EC_POINT_mul(group, result, z, master_pub, one, ctx);
public_key rtn;
rtn.my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 );
EC_KEY_set_public_key(rtn.my->_key,result);
return rtn;
}
bool public_key::valid()const
{
return my->_key != nullptr;
return my->_key != detail::empty_key;
}
public_key public_key::add( const fc::sha256& digest )const
{
try {
ec_group group(EC_GROUP_new_by_curve_name(NID_secp256k1));
bn_ctx ctx(BN_CTX_new());
fc::bigint digest_bi( (char*)&digest, sizeof(digest) );
ssl_bignum order;
EC_GROUP_get_order(group, order, ctx);
if( digest_bi > fc::bigint(order) )
{
FC_THROW_EXCEPTION( exception, "digest > group order" );
}
public_key digest_key = private_key::regenerate(digest).get_public_key();
const EC_POINT* digest_point = EC_KEY_get0_public_key( digest_key.my->_key );
// get point from this public key
const EC_POINT* master_pub = EC_KEY_get0_public_key( my->_key );
ssl_bignum z;
BN_bin2bn((unsigned char*)&digest, sizeof(digest), z);
// multiply by digest
ssl_bignum one;
BN_one(one);
ec_point result(EC_POINT_new(group));
EC_POINT_add(group, result, digest_point, master_pub, ctx);
if (EC_POINT_is_at_infinity(group, result))
{
FC_THROW_EXCEPTION( exception, "point at infinity" );
}
public_key rtn;
rtn.my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 );
EC_KEY_set_public_key(rtn.my->_key,result);
return rtn;
} FC_RETHROW_EXCEPTIONS( debug, "digest: ${digest}", ("digest",digest) );
public_key_data new_key;
memcpy( new_key.begin(), my->_key.begin(), new_key.size() );
FC_ASSERT( secp256k1_ec_pubkey_tweak_add( (unsigned char*) new_key.begin(), new_key.size(), (unsigned char*) digest.data() ) );
return public_key( new_key );
}
std::string public_key::to_base58() const
{
public_key_data key = serialize();
uint32_t check = (uint32_t)sha256::hash(key.data, sizeof(key))._hash[0];
assert(key.size() + sizeof(check) == 37);
array<char, 37> data;
memcpy(data.data, key.begin(), key.size());
memcpy(data.begin() + key.size(), (const char*)&check, sizeof(check));
return fc::to_base58(data.begin(), data.size());
}
public_key public_key::from_base58( const std::string& b58 )
{
array<char, 37> data;
size_t s = fc::from_base58(b58, (char*)&data, sizeof(data) );
FC_ASSERT( s == sizeof(data) );
public_key_data key;
uint32_t check = (uint32_t)sha256::hash(data.data, sizeof(key))._hash[0];
FC_ASSERT( memcmp( (char*)&check, data.data + sizeof(key), sizeof(check) ) == 0 );
memcpy( (char*)key.data, data.data, sizeof(key) );
return public_key(key);
return to_base58( my->_key );
}
private_key::private_key()
{}
private_key private_key::generate_from_seed( const fc::sha256& seed, const fc::sha256& offset )
{
ssl_bignum z;
BN_bin2bn((unsigned char*)&offset, sizeof(offset), z);
ec_group group(EC_GROUP_new_by_curve_name(NID_secp256k1));
bn_ctx ctx(BN_CTX_new());
ssl_bignum order;
EC_GROUP_get_order(group, order, ctx);
// secexp = (seed + z) % order
ssl_bignum secexp;
BN_bin2bn((unsigned char*)&seed, sizeof(seed), secexp);
BN_add(secexp, secexp, z);
BN_mod(secexp, secexp, order, ctx);
fc::sha256 secret;
assert(BN_num_bytes(secexp) <= int64_t(sizeof(secret)));
auto shift = sizeof(secret) - BN_num_bytes(secexp);
BN_bn2bin(secexp, ((unsigned char*)&secret)+shift);
return regenerate( secret );
}
private_key private_key::regenerate( const fc::sha256& secret )
{
private_key self;
self.my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 );
if( !self.my->_key ) FC_THROW_EXCEPTION( exception, "Unable to generate EC key" );
ssl_bignum bn;
BN_bin2bn( (const unsigned char*)&secret, 32, bn );
if( !EC_KEY_regenerate_key(self.my->_key,bn) )
{
FC_THROW_EXCEPTION( exception, "unable to regenerate key" );
}
self.my->_key = secret;
return self;
}
fc::sha256 private_key::get_secret()const
{
if( !my->_key )
{
return fc::sha256();
}
fc::sha256 sec;
const BIGNUM* bn = EC_KEY_get0_private_key(my->_key);
if( bn == NULL )
{
FC_THROW_EXCEPTION( exception, "get private key failed" );
}
int nbytes = BN_num_bytes(bn);
BN_bn2bin(bn, &((unsigned char*)&sec)[32-nbytes] );
return sec;
return my->_key;
}
private_key private_key::generate()
private_key::private_key( EC_KEY* k )
{
private_key self;
EC_KEY* k = EC_KEY_new_by_curve_name( NID_secp256k1 );
if( !k ) FC_THROW_EXCEPTION( exception, "Unable to generate EC key" );
self.my->_key = k;
if( !EC_KEY_generate_key( self.my->_key ) )
{
FC_THROW_EXCEPTION( exception, "ecc key generation error" );
}
#if 0
= bigint( EC_KEY_get0_private_key( k );
EC_POINT* pub = EC_KEY_get0_public_key( k );
EC_GROUP* group = EC_KEY_get0_group( k );
EC_POINT_get_affine_coordinates_GFp( group, pub, self.my->_pub_x.get(), self.my->_pub_y.get(), nullptr/*ctx*/ );
my->_key = get_secret( k );
EC_KEY_free(k);
#endif
return self;
}
signature private_key::sign( const fc::sha256& digest )const
{
unsigned int buf_len = ECDSA_size(my->_key);
// fprintf( stderr, "%d %d\n", buf_len, sizeof(sha256) );
signature sig;
assert( buf_len == sizeof(sig) );
if( !ECDSA_sign( 0,
(const unsigned char*)&digest, sizeof(digest),
(unsigned char*)&sig, &buf_len, my->_key ) )
{
FC_THROW_EXCEPTION( exception, "signing error" );
}
return sig;
}
bool public_key::verify( const fc::sha256& digest, const fc::ecc::signature& sig )
{
return 1 == ECDSA_verify( 0, (unsigned char*)&digest, sizeof(digest), (unsigned char*)&sig, sizeof(sig), my->_key );
}
public_key_data public_key::serialize()const
{
public_key_data dat;
if( !my->_key ) return dat;
EC_KEY_set_conv_form( my->_key, POINT_CONVERSION_COMPRESSED );
/*size_t nbytes = i2o_ECPublicKey( my->_key, nullptr ); */
/*assert( nbytes == 33 )*/
char* front = &dat.data[0];
i2o_ECPublicKey( my->_key, (unsigned char**)&front );
return dat;
/*
EC_POINT* pub = EC_KEY_get0_public_key( my->_key );
EC_GROUP* group = EC_KEY_get0_group( my->_key );
EC_POINT_get_affine_coordinates_GFp( group, pub, self.my->_pub_x.get(), self.my->_pub_y.get(), nullptr );
*/
return my->_key;
}
public_key_point_data public_key::serialize_ecc_point()const
{
public_key_point_data dat;
if( !my->_key ) return dat;
EC_KEY_set_conv_form( my->_key, POINT_CONVERSION_UNCOMPRESSED );
char* front = &dat.data[0];
i2o_ECPublicKey( my->_key, (unsigned char**)&front );
memcpy( dat.begin(), my->_key.begin(), my->_key.size() );
unsigned int pk_len = my->_key.size();
FC_ASSERT( secp256k1_ec_pubkey_decompress( (unsigned char *) dat.begin(), (int*) &pk_len ) );
FC_ASSERT( pk_len == dat.size() );
return dat;
}
public_key::public_key()
{
}
public_key::~public_key()
{
}
// FIXME
public_key::public_key( const public_key_point_data& dat )
{
const char* front = &dat.data[0];
if( *front == 0 ){}
else
{
/*my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 ); */
my->_key = o2i_ECPublicKey( &my->_key, (const unsigned char**)&front, sizeof(dat) );
if( !my->_key )
{
FC_THROW_EXCEPTION( exception, "error decoding public key", ("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
}
}
public_key::public_key( const public_key_data& dat )
{
const char* front = &dat.data[0];
if( *front == 0 ){}
else
{
my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 );
my->_key = o2i_ECPublicKey( &my->_key, (const unsigned char**)&front, sizeof(public_key_data) );
if( !my->_key )
{
FC_THROW_EXCEPTION( exception, "error decoding public key", ("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
// my->_key = o2i_ECPublicKey( &my->_key, (const unsigned char**)&front, sizeof(dat) );
// if( !my->_key )
// {
// FC_THROW_EXCEPTION( exception, "error decoding public key", ("s", ERR_error_string( ERR_get_error(), nullptr) ) );
// }
}
}
bool private_key::verify( const fc::sha256& digest, const fc::ecc::signature& sig )
public_key::public_key( const public_key_data& dat )
{
return 1 == ECDSA_verify( 0, (unsigned char*)&digest, sizeof(digest), (unsigned char*)&sig, sizeof(sig), my->_key );
my->_key = dat;
}
public_key private_key::get_public_key()const
{
public_key pub;
pub.my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 );
EC_KEY_set_public_key( pub.my->_key, EC_KEY_get0_public_key( my->_key ) );
unsigned int pk_len;
FC_ASSERT( secp256k1_ec_pubkey_create( (unsigned char*) pub.my->_key.begin(), (int*) &pk_len, (unsigned char*) my->_key.data(), 1 ) );
FC_ASSERT( pk_len == pub.my->_key.size() );
return pub;
}
// FIXME
fc::sha512 private_key::get_shared_secret( const public_key& other )const
{
FC_ASSERT( my->_key != nullptr );
FC_ASSERT( other.my->_key != nullptr );
// FC_ASSERT( my->_key != nullptr );
// FC_ASSERT( other.my->_key != nullptr );
fc::sha512 buf;
ECDH_compute_key( (unsigned char*)&buf, sizeof(buf), EC_KEY_get0_public_key(other.my->_key), my->_key, ecies_key_derivation );
// ECDH_compute_key( (unsigned char*)&buf, sizeof(buf), EC_KEY_get0_public_key(other.my->_key), my->_key, ecies_key_derivation );
return buf;
}
@ -487,112 +292,26 @@ namespace fc { namespace ecc {
if (nV<27 || nV>=35)
FC_THROW_EXCEPTION( exception, "unable to reconstruct public key from signature" );
ECDSA_SIG *sig = ECDSA_SIG_new();
BN_bin2bn(&c.data[1],32,sig->r);
BN_bin2bn(&c.data[33],32,sig->s);
if( check_canonical )
{
FC_ASSERT( !(c.data[1] & 0x80), "signature is not canonical" );
FC_ASSERT( !(c.data[1] == 0 && !(c.data[2] & 0x80)), "signature is not canonical" );
FC_ASSERT( !(c.data[33] & 0x80), "signature is not canonical" );
FC_ASSERT( !(c.data[33] == 0 && !(c.data[34] & 0x80)), "signature is not canonical" );
is_canonical( c );
}
my->_key = EC_KEY_new_by_curve_name(NID_secp256k1);
if (nV >= 31)
{
EC_KEY_set_conv_form( my->_key, POINT_CONVERSION_COMPRESSED );
nV -= 4;
// fprintf( stderr, "compressed\n" );
}
if (ECDSA_SIG_recover_key_GFp(my->_key, sig, (unsigned char*)&digest, sizeof(digest), nV - 27, 0) == 1)
{
ECDSA_SIG_free(sig);
return;
}
ECDSA_SIG_free(sig);
FC_THROW_EXCEPTION( exception, "unable to reconstruct public key from signature" );
unsigned int pk_len;
FC_ASSERT( secp256k1_ecdsa_recover_compact( (unsigned char*) digest.data(), (unsigned char*) c.begin() + 1, (unsigned char*) my->_key.begin(), (int*) &pk_len, 1, (*c.begin() - 27) & 3 ) );
FC_ASSERT( pk_len == my->_key.size() );
}
compact_signature private_key::sign_compact( const fc::sha256& digest )const
{
try {
FC_ASSERT( my->_key != nullptr );
auto my_pub_key = get_public_key().serialize(); // just for good measure
//ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&digest, sizeof(digest), my->_key);
while( true )
{
ecdsa_sig sig = ECDSA_do_sign((unsigned char*)&digest, sizeof(digest), my->_key);
if (sig==nullptr)
FC_THROW_EXCEPTION( exception, "Unable to sign" );
compact_signature csig;
// memset( csig.data, 0, sizeof(csig) );
int nBitsR = BN_num_bits(sig->r);
int nBitsS = BN_num_bits(sig->s);
if (nBitsR <= 256 && nBitsS <= 256)
{
int nRecId = -1;
for (int i=0; i<4; i++)
{
public_key keyRec;
keyRec.my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 );
if (ECDSA_SIG_recover_key_GFp(keyRec.my->_key, sig, (unsigned char*)&digest, sizeof(digest), i, 1) == 1)
{
if (keyRec.serialize() == my_pub_key )
{
nRecId = i;
break;
}
}
}
if (nRecId == -1)
{
FC_THROW_EXCEPTION( exception, "unable to construct recoverable key");
}
unsigned char* result = nullptr;
auto bytes = i2d_ECDSA_SIG( sig, &result );
auto lenR = result[3];
auto lenS = result[5+lenR];
//idump( (result[0])(result[1])(result[2])(result[3])(result[3+lenR])(result[4+lenR])(bytes)(lenR)(lenS) );
if( lenR != 32 ) { free(result); continue; }
if( lenS != 32 ) { free(result); continue; }
//idump( (33-(nBitsR+7)/8) );
//idump( (65-(nBitsS+7)/8) );
//idump( (sizeof(csig) ) );
memcpy( &csig.data[1], &result[4], lenR );
memcpy( &csig.data[33], &result[6+lenR], lenS );
//idump( (csig.data[33]) );
//idump( (csig.data[1]) );
free(result);
//idump( (nRecId) );
csig.data[0] = nRecId+27+4;//(fCompressedPubKey ? 4 : 0);
/*
idump( (csig) );
auto rlen = BN_bn2bin(sig->r,&csig.data[33-(nBitsR+7)/8]);
auto slen = BN_bn2bin(sig->s,&csig.data[65-(nBitsS+7)/8]);
idump( (rlen)(slen) );
*/
}
return csig;
} // while true
} FC_RETHROW_EXCEPTIONS( warn, "sign ${digest}", ("digest", digest)("private_key",*this) );
compact_signature result;
FC_ASSERT( secp256k1_ecdsa_sign_compact( (unsigned char*) digest.data(), (unsigned char*) result.begin(), (unsigned char*) my->_key.data(), NULL, NULL, NULL ));
return result;
}
private_key& private_key::operator=( private_key&& pk )
{
if( my->_key )
{
EC_KEY_free(my->_key);
}
my->_key = pk.my->_key;
pk.my->_key = nullptr;
return *this;
}
public_key::public_key( const public_key& pk )
@ -614,55 +333,18 @@ namespace fc { namespace ecc {
public_key& public_key::operator=( public_key&& pk )
{
if( my->_key )
{
EC_KEY_free(my->_key);
}
my->_key = pk.my->_key;
pk.my->_key = nullptr;
return *this;
}
public_key& public_key::operator=( const public_key& pk )
{
if( my->_key )
{
EC_KEY_free(my->_key);
}
my->_key = EC_KEY_dup(pk.my->_key);
my->_key = pk.my->_key;
return *this;
}
private_key& private_key::operator=( const private_key& pk )
{
if( my->_key )
{
EC_KEY_free(my->_key);
}
my->_key = EC_KEY_dup(pk.my->_key);
my->_key = pk.my->_key;
return *this;
}
}
void to_variant( const ecc::private_key& var, variant& vo )
{
vo = var.get_secret();
}
void from_variant( const variant& var, ecc::private_key& vo )
{
fc::sha256 sec;
from_variant( var, sec );
vo = ecc::private_key::regenerate(sec);
}
void to_variant( const ecc::public_key& var, variant& vo )
{
vo = var.serialize();
}
void from_variant( const variant& var, ecc::public_key& vo )
{
ecc::public_key_data dat;
from_variant( var, dat );
vo = ecc::public_key(dat);
}
}