added missing files: romix.[hc]pp

This commit is contained in:
BrownBear 2014-02-27 12:37:23 +01:00
parent 49ff83922b
commit 46bfcfe74d
2 changed files with 179 additions and 0 deletions

View file

@ -0,0 +1,80 @@
// Most of this file has been ported from EncryptionUtils.cpp from BitcoinArmory:
////////////////////////////////////////////////////////////////////////////////
// //
// Copyright(C) 2011-2013, Armory Technologies, Inc. //
// Distributed under the GNU Affero General Public License (AGPL v3) //
// See LICENSE or http://www.gnu.org/licenses/agpl.html //
// //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// For the KDF:
//
// This technique is described in Colin Percival's paper on memory-hard
// key-derivation functions, used to create "scrypt":
//
// http://www.tarsnap.com/scrypt/scrypt.pdf
//
// The goal is to create a key-derivation function that can force a memory
// requirement on the thread applying the KDF. By picking a sequence-length
// of 1,000,000, each thread will require 32 MB of memory to compute the keys,
// which completely disarms GPUs of their massive parallelization capabilities
// (for maximum parallelization, the kernel must use less than 1-2 MB/thread)
//
// Even with less than 1,000,000 hashes, as long as it requires more than 64
// kB of memory, a GPU will have to store the computed lookup tables in global
// memory, which is extremely slow for random lookup. As a result, GPUs are
// no better (and possibly much worse) than a CPU for brute-forcing the passwd
//
// This KDF is actually the ROMIX algorithm described on page 6 of Colin's
// paper. This was chosen because it is the simplest technique that provably
// achieves the goal of being secure, and memory-hard.
//
// The computeKdfParams method well test the speed of the system it is running
// on, and try to pick the largest memory-size the system can compute in less
// than 0.25s (or specified target).
//
//
// NOTE: If you are getting an error about invalid argument types, from python,
// it is usually because you passed in a BinaryData/Python-string instead
// of a SecureBinaryData object
//
////////////////////////////////////////////////////////////////////////////////
#pragma once
#include <string>
namespace fc {
////////////////////////////////////////////////////////////////////////////////
// A memory-bound key-derivation function -- uses a variation of Colin
// Percival's ROMix algorithm: http://www.tarsnap.com/scrypt/scrypt.pdf
//
// The computeKdfParams method takes in a target time, T, for computation
// on the computer executing the test. The final KDF should take somewhere
// between T/2 and T seconds.
class romix
{
public:
romix(u_int32_t memReqts, u_int32_t numIter, std::string salt);
std::string deriveKey_OneIter(std::string const & password);
std::string deriveKey(std::string const & password);
private:
u_int32_t hashOutputBytes_;
u_int32_t kdfOutputBytes_; // size of final key data
u_int32_t memoryReqtBytes_;
u_int32_t sequenceCount_;
std::string salt_; // prob not necessary amidst numIter, memReqts
// but I guess it can't hurt
u_int32_t numIterations_; // We set the ROMIX params for a given memory
// req't. Then run it numIter times to meet
// the computation-time req't
};
}

99
src/crypto/romix.cpp Normal file
View file

@ -0,0 +1,99 @@
// Most of this file has been ported from EncryptionUtils.cpp from BitcoinArmory:
////////////////////////////////////////////////////////////////////////////////
// //
// Copyright(C) 2011-2013, Armory Technologies, Inc. //
// Distributed under the GNU Affero General Public License (AGPL v3) //
// See LICENSE or http://www.gnu.org/licenses/agpl.html //
// //
////////////////////////////////////////////////////////////////////////////////
#include <fc/crypto/sha256.hpp>
#include <fc/crypto/sha512.hpp>
#include <fc/crypto/romix.hpp>
#include <string.h>
namespace fc
{
romix::romix( u_int32_t memReqts, u_int32_t numIter, std::string salt ) :
hashOutputBytes_( 64 ),
kdfOutputBytes_( 32 )
{
memoryReqtBytes_ = memReqts;
sequenceCount_ = memoryReqtBytes_ / hashOutputBytes_;
numIterations_ = numIter;
salt_ = salt;
}
std::string romix::deriveKey_OneIter( std::string const & password )
{
static fc::sha512 sha512;
// Concatenate the salt/IV to the password
std::string saltedPassword = password + salt_;
// Prepare the lookup table
char *lookupTable_ = new char[memoryReqtBytes_];
u_int32_t const HSZ = hashOutputBytes_;
// First hash to seed the lookup table, input is variable length anyway
fc::sha512 hash = sha512.hash(saltedPassword);
memcpy(lookupTable_, &hash, HSZ);
// Compute <sequenceCount_> consecutive hashes of the passphrase
// Every iteration is stored in the next 64-bytes in the Lookup table
for( u_int32_t nByte = 0; nByte < memoryReqtBytes_ - HSZ; nByte += HSZ )
{
// Compute hash of slot i, put result in slot i+1
fc::sha512 hash = sha512.hash(lookupTable_ + nByte, HSZ);
memcpy(lookupTable_ + nByte + HSZ, &hash, HSZ);
}
// LookupTable should be complete, now start lookup sequence.
// Start with the last hash from the previous step
std::string X(lookupTable_ + memoryReqtBytes_ - HSZ, HSZ);
std::string Y(HSZ, '0');
// We "integerize" a hash value by taking the last 4 bytes of
// as a u_int32_t, and take modulo sequenceCount
u_int64_t* X64ptr = (u_int64_t*)(X.data());
u_int64_t* Y64ptr = (u_int64_t*)(Y.data());
u_int64_t* V64ptr = NULL;
u_int32_t newIndex;
u_int32_t const nXorOps = HSZ / sizeof(u_int64_t);
// Pure ROMix would use sequenceCount_ for the number of lookups.
// We divide by 2 to reduce computation time RELATIVE to the memory usage
// This still provides suffient LUT operations, but allows us to use more
// memory in the same amount of time (and this is the justification for
// the scrypt algorithm -- it is basically ROMix, modified for more
// flexibility in controlling compute-time vs memory-usage).
u_int32_t const nLookups = sequenceCount_ / 2;
for(u_int32_t nSeq=0; nSeq<nLookups; nSeq++)
{
// Interpret last 4 bytes of last result (mod seqCt) as next LUT index
newIndex = *(u_int32_t*)(X.data()+HSZ-4) % sequenceCount_;
// V represents the hash result at <newIndex>
V64ptr = (u_int64_t*)(lookupTable_ + HSZ * newIndex);
// xor X with V, and store the result in X
for(u_int32_t i = 0; i < nXorOps; i++)
*(Y64ptr + i) = *(X64ptr + i) ^ *(V64ptr + i);
// Hash the xor'd data to get the next index for lookup
fc::sha512 hash = sha512.hash(Y.data(), HSZ);
X.assign(hash.data(), HSZ);
}
// Truncate the final result to get the final key
delete lookupTable_;
return X.substr(0, kdfOutputBytes_);
}
std::string romix::deriveKey( std::string const & password )
{
std::string masterKey(password);
for(u_int32_t i=0; i<numIterations_; i++)
masterKey = deriveKey_OneIter(masterKey);
return masterKey;
}
} // namespace fc