added ntp hash_ctr_rng

This commit is contained in:
Roman Olearski 2017-07-13 16:18:29 +02:00
parent 4d8ac59b0b
commit ff099209b6
4 changed files with 407 additions and 0 deletions

View file

@ -236,6 +236,7 @@ set( fc_sources
src/network/http/http_server.cpp
src/network/http/websocket.cpp
src/network/ip.cpp
src/network/ntp.cpp
src/network/rate_limiting.cpp
src/network/resolve.cpp
src/network/url.cpp

View file

@ -0,0 +1,107 @@
#pragma once
#include <boost/multiprecision/integer.hpp>
namespace fc {
/**
* Always returns 0. Useful for testing.
*/
class nullary_rng
{
public:
nullary_rng() {}
virtual ~nullary_rng() {}
template< typename T > T operator()( T max )
{ return T(0); }
} ;
/**
* The hash_ctr_rng generates bits using a hash function in counter (CTR)
* mode.
*/
template<class HashClass, int SeedLength>
class hash_ctr_rng
{
public:
hash_ctr_rng( const char* seed, uint64_t counter = 0 )
: _counter( counter ), _current_offset( 0 )
{
memcpy( _seed, seed, SeedLength );
_reset_current_value();
return;
}
virtual ~hash_ctr_rng() {}
uint64_t get_bits( uint8_t count )
{
uint64_t result = 0;
uint64_t mask = 1;
// grab the requested number of bits
while( count > 0 )
{
result |=
(
(
(
_current_value.data()[ (_current_offset >> 3) & 0x1F ]
& ( 1 << (_current_offset & 0x07) )
)
!= 0
) ? mask : 0
);
mask += mask;
--count;
++_current_offset;
if( _current_offset == (_current_value.data_size() << 3) )
{
_counter++;
_current_offset = 0;
_reset_current_value();
}
}
return result;
}
uint64_t operator()( uint64_t bound )
{
if( bound <= 1 )
return 0;
uint8_t bitcount = boost::multiprecision::detail::find_msb( bound ) + 1;
// probability of loop exiting is >= 1/2, so probability of
// running N times is bounded above by (1/2)^N
while( true )
{
uint64_t result = get_bits( bitcount );
if( result < bound )
return result;
}
}
// convenience method which does casting for types other than uint64_t
template< typename T > T operator()( T bound )
{ return (T) ( (*this)(uint64_t( bound )) ); }
void _reset_current_value()
{
// internal implementation detail, called to update
// _current_value when _counter changes
typename HashClass::encoder enc;
enc.write( _seed , SeedLength );
enc.write( (char *) &_counter, 8 );
_current_value = enc.result();
return;
}
uint64_t _counter;
char _seed[ SeedLength ];
HashClass _current_value;
uint16_t _current_offset;
static const int seed_length = SeedLength;
};
} // end namespace fc

View file

@ -0,0 +1,27 @@
#pragma once
#include <string>
#include <memory>
#include <fc/time.hpp>
#include <fc/optional.hpp>
namespace fc {
namespace detail { class ntp_impl; }
class ntp
{
public:
ntp();
~ntp();
void add_server( const std::string& hostname, uint16_t port = 123 );
void set_request_interval( uint32_t interval_sec );
void request_now();
optional<time_point> get_time()const;
private:
std::unique_ptr<detail::ntp_impl> my;
};
} // namespace fc

272
src/network/ntp.cpp Normal file
View file

@ -0,0 +1,272 @@
#include <fc/network/ntp.hpp>
#include <fc/network/udp_socket.hpp>
#include <fc/network/resolve.hpp>
#include <fc/network/ip.hpp>
#include <fc/thread/thread.hpp>
#include <stdint.h>
#include "../byteswap.hpp"
#include <atomic>
#include <array>
namespace fc
{
namespace detail {
class ntp_impl
{
public:
/** vector < host, port > */
fc::thread _ntp_thread;
std::vector< std::pair< std::string, uint16_t> > _ntp_hosts;
fc::future<void> _read_loop_done;
udp_socket _sock;
uint32_t _request_interval_sec;
uint32_t _retry_failed_request_interval_sec;
fc::time_point _last_valid_ntp_reply_received_time;
std::atomic_bool _last_ntp_delta_initialized;
std::atomic<int64_t> _last_ntp_delta_microseconds;
fc::future<void> _request_time_task_done;
ntp_impl() :
_ntp_thread("ntp"),
_request_interval_sec( 60*60 /* 1 hr */),
_retry_failed_request_interval_sec(60 * 5),
_last_ntp_delta_microseconds(0)
{
_last_ntp_delta_initialized = false;
_ntp_hosts.push_back( std::make_pair( "pool.ntp.org",123 ) );
}
~ntp_impl()
{
}
fc::time_point ntp_timestamp_to_fc_time_point(uint64_t ntp_timestamp_net_order)
{
uint64_t ntp_timestamp_host = bswap_64(ntp_timestamp_net_order);
uint32_t fractional_seconds = ntp_timestamp_host & 0xffffffff;
uint32_t microseconds = (uint32_t)((((uint64_t)fractional_seconds * 1000000) + (uint64_t(1) << 31)) >> 32);
uint32_t seconds_since_1900 = ntp_timestamp_host >> 32;
uint32_t seconds_since_epoch = seconds_since_1900 - 2208988800;
return fc::time_point() + fc::seconds(seconds_since_epoch) + fc::microseconds(microseconds);
}
uint64_t fc_time_point_to_ntp_timestamp(const fc::time_point& fc_timestamp)
{
uint64_t microseconds_since_epoch = (uint64_t)fc_timestamp.time_since_epoch().count();
uint32_t seconds_since_epoch = (uint32_t)(microseconds_since_epoch / 1000000);
uint32_t seconds_since_1900 = seconds_since_epoch + 2208988800;
uint32_t microseconds = microseconds_since_epoch % 1000000;
uint32_t fractional_seconds = (uint32_t)((((uint64_t)microseconds << 32) + (uint64_t(1) << 31)) / 1000000);
uint64_t ntp_timestamp_net_order = ((uint64_t)seconds_since_1900 << 32) + fractional_seconds;
return bswap_64(ntp_timestamp_net_order);
}
void request_now()
{
assert(_ntp_thread.is_current());
for( auto item : _ntp_hosts )
{
try
{
//wlog( "resolving... ${r}", ("r", item) );
auto eps = resolve( item.first, item.second );
for( auto ep : eps )
{
// wlog( "sending request to ${ep}", ("ep",ep) );
std::shared_ptr<char> send_buffer(new char[48], [](char* p){ delete[] p; });
std::array<unsigned char, 48> packet_to_send { {010,0,0,0,0,0,0,0,0} };
memcpy(send_buffer.get(), packet_to_send.data(), packet_to_send.size());
uint64_t* send_buf_as_64_array = (uint64_t*)send_buffer.get();
send_buf_as_64_array[5] = fc_time_point_to_ntp_timestamp(fc::time_point::now()); // 5 = Transmit Timestamp
_sock.send_to(send_buffer, packet_to_send.size(), ep);
break;
}
}
catch (const fc::canceled_exception&)
{
throw;
}
// this could fail to resolve but we want to go on to other hosts..
catch ( const fc::exception& e )
{
elog( "${e}", ("e",e.to_detail_string() ) );
}
}
} // request_now
// started for first time in ntp() constructor, canceled in ~ntp() destructor
// this task gets invoked every _retry_failed_request_interval_sec (currently 5 min), and if
// _request_interval_sec (currently 1 hour) has passed since the last successful update,
// it sends a new request
void request_time_task()
{
assert(_ntp_thread.is_current());
if (_last_valid_ntp_reply_received_time <= fc::time_point::now() - fc::seconds(_request_interval_sec - 5))
request_now();
if (!_request_time_task_done.valid() || !_request_time_task_done.canceled())
_request_time_task_done = schedule( [=](){ request_time_task(); },
fc::time_point::now() + fc::seconds(_retry_failed_request_interval_sec),
"request_time_task" );
} // request_loop
void start_read_loop()
{
_read_loop_done = _ntp_thread.async( [this](){ read_loop(); }, "ntp_read_loop" );
}
void read_loop()
{
assert(_ntp_thread.is_current());
uint32_t receive_buffer_size = sizeof(uint64_t) * 1024;
std::shared_ptr<char> receive_buffer(new char[receive_buffer_size], [](char* p){ delete[] p; });
uint64_t* recv_buf = (uint64_t*)receive_buffer.get();
//outer while to restart read-loop if exception is thrown while waiting to receive on socket.
while( !_read_loop_done.canceled() )
{
// if you start the read while loop here, the recieve_from call will throw "invalid argument" on win32,
// so instead we start the loop after making our first request
try
{
_sock.open();
request_time_task(); //this will re-send a time request
while( !_read_loop_done.canceled() )
{
fc::ip::endpoint from;
try
{
_sock.receive_from( receive_buffer, receive_buffer_size, from );
// wlog("received ntp reply from ${from}",("from",from) );
} FC_RETHROW_EXCEPTIONS(error, "Error reading from NTP socket");
fc::time_point receive_time = fc::time_point::now();
fc::time_point origin_time = ntp_timestamp_to_fc_time_point(recv_buf[3]);
fc::time_point server_receive_time = ntp_timestamp_to_fc_time_point(recv_buf[4]);
fc::time_point server_transmit_time = ntp_timestamp_to_fc_time_point(recv_buf[5]);
fc::microseconds offset(((server_receive_time - origin_time) +
(server_transmit_time - receive_time)).count() / 2);
fc::microseconds round_trip_delay((receive_time - origin_time) -
(server_transmit_time - server_receive_time));
//wlog("origin_time = ${origin_time}, server_receive_time = ${server_receive_time}, server_transmit_time = ${server_transmit_time}, receive_time = ${receive_time}",
// ("origin_time", origin_time)("server_receive_time", server_receive_time)("server_transmit_time", server_transmit_time)("receive_time", receive_time));
// wlog("ntp offset: ${offset}, round_trip_delay ${delay}", ("offset", offset)("delay", round_trip_delay));
//if the reply we just received has occurred more than a second after our last time request (it was more than a second ago since our last request)
if( round_trip_delay > fc::microseconds(300000) )
{
wlog("received stale ntp reply requested at ${request_time}, send a new time request", ("request_time", origin_time));
request_now(); //request another reply and ignore this one
}
else //we think we have a timely reply, process it
{
if( offset < fc::seconds(60*60*24) && offset > fc::seconds(-60*60*24) )
{
_last_ntp_delta_microseconds = offset.count();
_last_ntp_delta_initialized = true;
fc::microseconds ntp_delta_time = fc::microseconds(_last_ntp_delta_microseconds);
_last_valid_ntp_reply_received_time = receive_time;
wlog("ntp_delta_time updated to ${delta_time} us", ("delta_time",ntp_delta_time) );
}
else
elog( "NTP time and local time vary by more than a day! ntp:${ntp_time} local:${local}",
("ntp_time", receive_time + offset)("local", fc::time_point::now()) );
}
}
} // try
catch (fc::canceled_exception)
{
throw;
}
catch (const fc::exception& e)
{
//swallow any other exception and restart loop
elog("exception in read_loop, going to restart it. ${e}",("e",e));
}
catch (...)
{
//swallow any other exception and restart loop
elog("unknown exception in read_loop, going to restart it.");
}
_sock.close();
fc::usleep(fc::seconds(_retry_failed_request_interval_sec));
} //outer while loop
wlog("exiting ntp read_loop");
} //end read_loop()
}; //ntp_impl
} // namespace detail
ntp::ntp()
:my( new detail::ntp_impl() )
{
my->start_read_loop();
}
ntp::~ntp()
{
my->_ntp_thread.async([=](){
try
{
my->_request_time_task_done.cancel_and_wait("ntp object is destructing");
}
catch ( const fc::exception& e )
{
wlog( "Exception thrown while shutting down NTP's request_time_task, ignoring: ${e}", ("e",e) );
}
catch (...)
{
wlog( "Exception thrown while shutting down NTP's request_time_task, ignoring" );
}
try
{
my->_read_loop_done.cancel_and_wait("ntp object is destructing");
}
catch ( const fc::exception& e )
{
wlog( "Exception thrown while shutting down NTP's read_loop, ignoring: ${e}", ("e",e) );
}
catch (...)
{
wlog( "Exception thrown while shutting down NTP's read_loop, ignoring" );
}
}, "ntp_shutdown_task").wait();
}
void ntp::add_server( const std::string& hostname, uint16_t port)
{
my->_ntp_thread.async( [=](){ my->_ntp_hosts.push_back( std::make_pair(hostname,port) ); }, "add_server" ).wait();
}
void ntp::set_request_interval( uint32_t interval_sec )
{
my->_request_interval_sec = interval_sec;
my->_retry_failed_request_interval_sec = std::min(my->_retry_failed_request_interval_sec, interval_sec);
}
void ntp::request_now()
{
my->_ntp_thread.async( [=](){ my->request_now(); }, "request_now" ).wait();
}
optional<time_point> ntp::get_time()const
{
if( my->_last_ntp_delta_initialized )
return fc::time_point::now() + fc::microseconds(my->_last_ntp_delta_microseconds);
return optional<time_point>();
}
} //namespace fc