/***************************************************************************** Copyright (c) 2001 - 2010, The Board of Trustees of the University of Illinois. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Illinois nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ /***************************************************************************** written by Yunhong Gu, last updated 07/25/2010 *****************************************************************************/ #ifndef WIN32 #include #include #include #ifdef OSX #include #endif #else #include #include #ifdef LEGACY_WIN32 #include #endif #endif #include #include "md5.h" #include "common.h" bool CTimer::m_bUseMicroSecond = false; uint64_t CTimer::s_ullCPUFrequency = CTimer::readCPUFrequency(); #ifndef WIN32 pthread_mutex_t CTimer::m_EventLock = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t CTimer::m_EventCond = PTHREAD_COND_INITIALIZER; #else pthread_mutex_t CTimer::m_EventLock = CreateMutex(NULL, false, NULL); pthread_cond_t CTimer::m_EventCond = CreateEvent(NULL, false, false, NULL); #endif CTimer::CTimer(): m_ullSchedTime(), m_TickCond(), m_TickLock() { #ifndef WIN32 pthread_mutex_init(&m_TickLock, NULL); pthread_cond_init(&m_TickCond, NULL); #else m_TickLock = CreateMutex(NULL, false, NULL); m_TickCond = CreateEvent(NULL, false, false, NULL); #endif } CTimer::~CTimer() { #ifndef WIN32 pthread_mutex_destroy(&m_TickLock); pthread_cond_destroy(&m_TickCond); #else CloseHandle(m_TickLock); CloseHandle(m_TickCond); #endif } void CTimer::rdtsc(uint64_t &x) { if (m_bUseMicroSecond) { x = getTime(); return; } #ifdef IA32 uint32_t lval, hval; //asm volatile ("push %eax; push %ebx; push %ecx; push %edx"); //asm volatile ("xor %eax, %eax; cpuid"); asm volatile ("rdtsc" : "=a" (lval), "=d" (hval)); //asm volatile ("pop %edx; pop %ecx; pop %ebx; pop %eax"); x = hval; x = (x << 32) | lval; #elif defined(IA64) asm ("mov %0=ar.itc" : "=r"(x) :: "memory"); #elif defined(AMD64) uint32_t lval, hval; asm ("rdtsc" : "=a" (lval), "=d" (hval)); x = hval; x = (x << 32) | lval; #elif defined(WIN32) //HANDLE hCurThread = ::GetCurrentThread(); //DWORD_PTR dwOldMask = ::SetThreadAffinityMask(hCurThread, 1); BOOL ret = QueryPerformanceCounter((LARGE_INTEGER *)&x); //SetThreadAffinityMask(hCurThread, dwOldMask); if (!ret) x = getTime() * s_ullCPUFrequency; #elif defined(OSX) x = mach_absolute_time(); #else // use system call to read time clock for other archs x = getTime(); #endif } uint64_t CTimer::readCPUFrequency() { uint64_t frequency = 1; // 1 tick per microsecond. #if defined(IA32) || defined(IA64) || defined(AMD64) uint64_t t1, t2; rdtsc(t1); timespec ts; ts.tv_sec = 0; ts.tv_nsec = 100000000; nanosleep(&ts, NULL); rdtsc(t2); // CPU clocks per microsecond frequency = (t2 - t1) / 100000; #elif defined(WIN32) int64_t ccf; if (QueryPerformanceFrequency((LARGE_INTEGER *)&ccf)) frequency = ccf / 1000000; #elif defined(OSX) mach_timebase_info_data_t info; mach_timebase_info(&info); frequency = info.denom * 1000ULL / info.numer; #endif // Fall back to microsecond if the resolution is not high enough. if (frequency < 10) { frequency = 1; m_bUseMicroSecond = true; } return frequency; } uint64_t CTimer::getCPUFrequency() { return s_ullCPUFrequency; } void CTimer::sleep(uint64_t interval) { uint64_t t; rdtsc(t); // sleep next "interval" time sleepto(t + interval); } void CTimer::sleepto(uint64_t nexttime) { // Use class member such that the method can be interrupted by others m_ullSchedTime = nexttime; uint64_t t; rdtsc(t); while (t < m_ullSchedTime) { #ifndef NO_BUSY_WAITING #ifdef IA32 __asm__ volatile ("pause; rep; nop; nop; nop; nop; nop;"); #elif IA64 __asm__ volatile ("nop 0; nop 0; nop 0; nop 0; nop 0;"); #elif AMD64 __asm__ volatile ("nop; nop; nop; nop; nop;"); #endif #else #ifndef WIN32 timeval now; timespec timeout; gettimeofday(&now, 0); if (now.tv_usec < 990000) { timeout.tv_sec = now.tv_sec; timeout.tv_nsec = (now.tv_usec + 10000) * 1000; } else { timeout.tv_sec = now.tv_sec + 1; timeout.tv_nsec = (now.tv_usec + 10000 - 1000000) * 1000; } pthread_mutex_lock(&m_TickLock); pthread_cond_timedwait(&m_TickCond, &m_TickLock, &timeout); pthread_mutex_unlock(&m_TickLock); #else WaitForSingleObject(m_TickCond, 1); #endif #endif rdtsc(t); } } void CTimer::interrupt() { // schedule the sleepto time to the current CCs, so that it will stop rdtsc(m_ullSchedTime); tick(); } void CTimer::tick() { #ifndef WIN32 pthread_cond_signal(&m_TickCond); #else SetEvent(m_TickCond); #endif } uint64_t CTimer::getTime() { //For Cygwin and other systems without microsecond level resolution, uncomment the following three lines //uint64_t x; //rdtsc(x); //return x / s_ullCPUFrequency; //Specific fix may be necessary if rdtsc is not available either. #ifndef WIN32 timeval t; gettimeofday(&t, 0); return t.tv_sec * 1000000ULL + t.tv_usec; #else LARGE_INTEGER ccf; HANDLE hCurThread = ::GetCurrentThread(); DWORD_PTR dwOldMask = ::SetThreadAffinityMask(hCurThread, 1); if (QueryPerformanceFrequency(&ccf)) { LARGE_INTEGER cc; if (QueryPerformanceCounter(&cc)) { SetThreadAffinityMask(hCurThread, dwOldMask); return (cc.QuadPart * 1000000ULL / ccf.QuadPart); } } SetThreadAffinityMask(hCurThread, dwOldMask); return GetTickCount() * 1000ULL; #endif } void CTimer::triggerEvent() { #ifndef WIN32 pthread_cond_signal(&m_EventCond); #else SetEvent(m_EventCond); #endif } void CTimer::waitForEvent() { #ifndef WIN32 timeval now; timespec timeout; gettimeofday(&now, 0); if (now.tv_usec < 990000) { timeout.tv_sec = now.tv_sec; timeout.tv_nsec = (now.tv_usec + 10000) * 1000; } else { timeout.tv_sec = now.tv_sec + 1; timeout.tv_nsec = (now.tv_usec + 10000 - 1000000) * 1000; } pthread_mutex_lock(&m_EventLock); pthread_cond_timedwait(&m_EventCond, &m_EventLock, &timeout); pthread_mutex_unlock(&m_EventLock); #else WaitForSingleObject(m_EventCond, 1); #endif } void CTimer::sleep() { #ifndef WIN32 usleep(10); #else Sleep(1); #endif } // // Automatically lock in constructor CGuard::CGuard(pthread_mutex_t& lock): m_Mutex(lock), m_iLocked() { #ifndef WIN32 m_iLocked = pthread_mutex_lock(&m_Mutex); #else m_iLocked = WaitForSingleObject(m_Mutex, INFINITE); #endif } // Automatically unlock in destructor CGuard::~CGuard() { #ifndef WIN32 if (0 == m_iLocked) pthread_mutex_unlock(&m_Mutex); #else if (WAIT_FAILED != m_iLocked) ReleaseMutex(m_Mutex); #endif } void CGuard::enterCS(pthread_mutex_t& lock) { #ifndef WIN32 pthread_mutex_lock(&lock); #else WaitForSingleObject(lock, INFINITE); #endif } void CGuard::leaveCS(pthread_mutex_t& lock) { #ifndef WIN32 pthread_mutex_unlock(&lock); #else ReleaseMutex(lock); #endif } void CGuard::createMutex(pthread_mutex_t& lock) { #ifndef WIN32 pthread_mutex_init(&lock, NULL); #else lock = CreateMutex(NULL, false, NULL); #endif } void CGuard::releaseMutex(pthread_mutex_t& lock) { #ifndef WIN32 pthread_mutex_destroy(&lock); #else CloseHandle(lock); #endif } void CGuard::createCond(pthread_cond_t& cond) { #ifndef WIN32 pthread_cond_init(&cond, NULL); #else cond = CreateEvent(NULL, false, false, NULL); #endif } void CGuard::releaseCond(pthread_cond_t& cond) { #ifndef WIN32 pthread_cond_destroy(&cond); #else CloseHandle(cond); #endif } // CUDTException::CUDTException(int major, int minor, int err): m_iMajor(major), m_iMinor(minor) { if (-1 == err) #ifndef WIN32 m_iErrno = errno; #else m_iErrno = GetLastError(); #endif else m_iErrno = err; } CUDTException::CUDTException(const CUDTException& e): m_iMajor(e.m_iMajor), m_iMinor(e.m_iMinor), m_iErrno(e.m_iErrno), m_strMsg() { } CUDTException::~CUDTException() { } const char* CUDTException::getErrorMessage() { // translate "Major:Minor" code into text message. switch (m_iMajor) { case 0: m_strMsg = "Success"; break; case 1: m_strMsg = "Connection setup failure"; switch (m_iMinor) { case 1: m_strMsg += ": connection time out"; break; case 2: m_strMsg += ": connection rejected"; break; case 3: m_strMsg += ": unable to create/configure UDP socket"; break; case 4: m_strMsg += ": abort for security reasons"; break; default: break; } break; case 2: switch (m_iMinor) { case 1: m_strMsg = "Connection was broken"; break; case 2: m_strMsg = "Connection does not exist"; break; default: break; } break; case 3: m_strMsg = "System resource failure"; switch (m_iMinor) { case 1: m_strMsg += ": unable to create new threads"; break; case 2: m_strMsg += ": unable to allocate buffers"; break; default: break; } break; case 4: m_strMsg = "File system failure"; switch (m_iMinor) { case 1: m_strMsg += ": cannot seek read position"; break; case 2: m_strMsg += ": failure in read"; break; case 3: m_strMsg += ": cannot seek write position"; break; case 4: m_strMsg += ": failure in write"; break; default: break; } break; case 5: m_strMsg = "Operation not supported"; switch (m_iMinor) { case 1: m_strMsg += ": Cannot do this operation on a BOUND socket"; break; case 2: m_strMsg += ": Cannot do this operation on a CONNECTED socket"; break; case 3: m_strMsg += ": Bad parameters"; break; case 4: m_strMsg += ": Invalid socket ID"; break; case 5: m_strMsg += ": Cannot do this operation on an UNBOUND socket"; break; case 6: m_strMsg += ": Socket is not in listening state"; break; case 7: m_strMsg += ": Listen/accept is not supported in rendezous connection setup"; break; case 8: m_strMsg += ": Cannot call connect on UNBOUND socket in rendezvous connection setup"; break; case 9: m_strMsg += ": This operation is not supported in SOCK_STREAM mode"; break; case 10: m_strMsg += ": This operation is not supported in SOCK_DGRAM mode"; break; case 11: m_strMsg += ": Another socket is already listening on the same port"; break; case 12: m_strMsg += ": Message is too large to send (it must be less than the UDT send buffer size)"; break; case 13: m_strMsg += ": Invalid epoll ID"; break; default: break; } break; case 6: m_strMsg = "Non-blocking call failure"; switch (m_iMinor) { case 1: m_strMsg += ": no buffer available for sending"; break; case 2: m_strMsg += ": no data available for reading"; break; default: break; } break; case 7: m_strMsg = "The peer side has signalled an error"; break; default: m_strMsg = "Unknown error"; } // Adding "errno" information if ((0 != m_iMajor) && (0 < m_iErrno)) { m_strMsg += ": "; #ifndef WIN32 char errmsg[1024]; if (strerror_r(m_iErrno, errmsg, 1024) == 0) m_strMsg += errmsg; #else LPVOID lpMsgBuf; FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, m_iErrno, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR)&lpMsgBuf, 0, NULL); m_strMsg += (char*)lpMsgBuf; LocalFree(lpMsgBuf); #endif } // period #ifndef WIN32 m_strMsg += "."; #endif return m_strMsg.c_str(); } int CUDTException::getErrorCode() const { return m_iMajor * 1000 + m_iMinor; } void CUDTException::clear() { m_iMajor = 0; m_iMinor = 0; m_iErrno = 0; } const int CUDTException::SUCCESS = 0; const int CUDTException::ECONNSETUP = 1000; const int CUDTException::ENOSERVER = 1001; const int CUDTException::ECONNREJ = 1002; const int CUDTException::ESOCKFAIL = 1003; const int CUDTException::ESECFAIL = 1004; const int CUDTException::ECONNFAIL = 2000; const int CUDTException::ECONNLOST = 2001; const int CUDTException::ENOCONN = 2002; const int CUDTException::ERESOURCE = 3000; const int CUDTException::ETHREAD = 3001; const int CUDTException::ENOBUF = 3002; const int CUDTException::EFILE = 4000; const int CUDTException::EINVRDOFF = 4001; const int CUDTException::ERDPERM = 4002; const int CUDTException::EINVWROFF = 4003; const int CUDTException::EWRPERM = 4004; const int CUDTException::EINVOP = 5000; const int CUDTException::EBOUNDSOCK = 5001; const int CUDTException::ECONNSOCK = 5002; const int CUDTException::EINVPARAM = 5003; const int CUDTException::EINVSOCK = 5004; const int CUDTException::EUNBOUNDSOCK = 5005; const int CUDTException::ENOLISTEN = 5006; const int CUDTException::ERDVNOSERV = 5007; const int CUDTException::ERDVUNBOUND = 5008; const int CUDTException::ESTREAMILL = 5009; const int CUDTException::EDGRAMILL = 5010; const int CUDTException::EDUPLISTEN = 5011; const int CUDTException::ELARGEMSG = 5012; const int CUDTException::EINVPOLLID = 5013; const int CUDTException::EASYNCFAIL = 6000; const int CUDTException::EASYNCSND = 6001; const int CUDTException::EASYNCRCV = 6002; const int CUDTException::ETIMEOUT = 6003; const int CUDTException::EPEERERR = 7000; const int CUDTException::EUNKNOWN = -1; // bool CIPAddress::ipcmp(const sockaddr* addr1, const sockaddr* addr2, int ver) { if (AF_INET == ver) { sockaddr_in* a1 = (sockaddr_in*)addr1; sockaddr_in* a2 = (sockaddr_in*)addr2; if ((a1->sin_port == a2->sin_port) && (a1->sin_addr.s_addr == a2->sin_addr.s_addr)) return true; } else { sockaddr_in6* a1 = (sockaddr_in6*)addr1; sockaddr_in6* a2 = (sockaddr_in6*)addr2; if (a1->sin6_port == a2->sin6_port) { for (int i = 0; i < 16; ++ i) if (*((char*)&(a1->sin6_addr) + i) != *((char*)&(a2->sin6_addr) + i)) return false; return true; } } return false; } void CIPAddress::ntop(const sockaddr* addr, uint32_t ip[4], int ver) { if (AF_INET == ver) { sockaddr_in* a = (sockaddr_in*)addr; ip[0] = a->sin_addr.s_addr; } else { sockaddr_in6* a = (sockaddr_in6*)addr; ip[3] = (a->sin6_addr.s6_addr[15] << 24) + (a->sin6_addr.s6_addr[14] << 16) + (a->sin6_addr.s6_addr[13] << 8) + a->sin6_addr.s6_addr[12]; ip[2] = (a->sin6_addr.s6_addr[11] << 24) + (a->sin6_addr.s6_addr[10] << 16) + (a->sin6_addr.s6_addr[9] << 8) + a->sin6_addr.s6_addr[8]; ip[1] = (a->sin6_addr.s6_addr[7] << 24) + (a->sin6_addr.s6_addr[6] << 16) + (a->sin6_addr.s6_addr[5] << 8) + a->sin6_addr.s6_addr[4]; ip[0] = (a->sin6_addr.s6_addr[3] << 24) + (a->sin6_addr.s6_addr[2] << 16) + (a->sin6_addr.s6_addr[1] << 8) + a->sin6_addr.s6_addr[0]; } } void CIPAddress::pton(sockaddr* addr, const uint32_t ip[4], int ver) { if (AF_INET == ver) { sockaddr_in* a = (sockaddr_in*)addr; a->sin_addr.s_addr = ip[0]; } else { sockaddr_in6* a = (sockaddr_in6*)addr; for (int i = 0; i < 4; ++ i) { a->sin6_addr.s6_addr[i * 4] = ip[i] & 0xFF; a->sin6_addr.s6_addr[i * 4 + 1] = (unsigned char)((ip[i] & 0xFF00) >> 8); a->sin6_addr.s6_addr[i * 4 + 2] = (unsigned char)((ip[i] & 0xFF0000) >> 16); a->sin6_addr.s6_addr[i * 4 + 3] = (unsigned char)((ip[i] & 0xFF000000) >> 24); } } } // void CMD5::compute(const char* input, unsigned char result[16]) { md5_state_t state; md5_init(&state); md5_append(&state, (const md5_byte_t *)input, strlen(input)); md5_finish(&state, result); }