#include #include #include #include #include #include #include #include #include #include #include "_digest_common.hpp" namespace fc { ripemd160::ripemd160() { memset( _hash, 0, sizeof(_hash) ); } ripemd160::ripemd160( const string& hex_str ) { fc::from_hex( hex_str, (char*)_hash, sizeof(_hash) ); } string ripemd160::str()const { return fc::to_hex( (char*)_hash, sizeof(_hash) ); } ripemd160::operator string()const { return str(); } char* ripemd160::data()const { return (char*)&_hash[0]; } class ripemd160::encoder::impl { public: impl() { memset( (char*)&ctx, 0, sizeof(ctx) ); } RIPEMD160_CTX ctx; }; ripemd160::encoder::~encoder() {} ripemd160::encoder::encoder() { reset(); } ripemd160 ripemd160::hash( const fc::sha512& h ) { return hash( (const char*)&h, sizeof(h) ); } ripemd160 ripemd160::hash( const fc::sha256& h ) { return hash( (const char*)&h, sizeof(h) ); } ripemd160 ripemd160::hash( const char* d, uint32_t dlen ) { encoder e; e.write(d,dlen); return e.result(); } ripemd160 ripemd160::hash( const string& s ) { return hash( s.c_str(), s.size() ); } void ripemd160::encoder::write( const char* d, uint32_t dlen ) { RIPEMD160_Update( &my->ctx, d, dlen); } ripemd160 ripemd160::encoder::result() { ripemd160 h; RIPEMD160_Final((uint8_t*)h.data(), &my->ctx ); return h; } void ripemd160::encoder::reset() { RIPEMD160_Init( &my->ctx); } ripemd160 operator << ( const ripemd160& h1, uint32_t i ) { ripemd160 result; fc::detail::shift_l( h1.data(), result.data(), result.data_size(), i ); return result; } ripemd160 operator ^ ( const ripemd160& h1, const ripemd160& h2 ) { ripemd160 result; result._hash[0] = h1._hash[0] ^ h2._hash[0]; result._hash[1] = h1._hash[1] ^ h2._hash[1]; result._hash[2] = h1._hash[2] ^ h2._hash[2]; result._hash[3] = h1._hash[3] ^ h2._hash[3]; result._hash[4] = h1._hash[4] ^ h2._hash[4]; return result; } bool operator >= ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) >= 0; } bool operator > ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) > 0; } bool operator < ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) < 0; } bool operator != ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) != 0; } bool operator == ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) == 0; } void to_variant( const ripemd160& bi, variant& v, uint32_t max_depth ) { to_variant( std::vector( (const char*)&bi, ((const char*)&bi) + sizeof(bi) ), v, max_depth ); } void from_variant( const variant& v, ripemd160& bi, uint32_t max_depth ) { std::vector ve = v.as< std::vector >( max_depth ); memset( &bi, char(0), sizeof(bi) ); if( ve.size() ) memcpy( &bi, ve.data(), fc::min(ve.size(),sizeof(bi)) ); } } // fc