#include #include #include #include #include #include #include #include #include #include namespace fc { ripemd160::ripemd160() { memset( _hash, 0, sizeof(_hash) ); } ripemd160::ripemd160( const string& hex_str ) { fc::from_hex( hex_str, (char*)_hash, sizeof(_hash) ); } string ripemd160::str()const { return fc::to_hex( (char*)_hash, sizeof(_hash) ); } ripemd160::operator string()const { return str(); } char* ripemd160::data()const { return (char*)&_hash[0]; } struct ripemd160::encoder::impl { RIPEMD160_CTX ctx; }; ripemd160::encoder::~encoder() {} ripemd160::encoder::encoder() { reset(); } ripemd160 ripemd160::hash( const fc::sha512& h ) { return hash( (const char*)&h, sizeof(h) ); } ripemd160 ripemd160::hash( const fc::sha256& h ) { return hash( (const char*)&h, sizeof(h) ); } ripemd160 ripemd160::hash( const char* d, uint32_t dlen ) { encoder e; e.write(d,dlen); return e.result(); } ripemd160 ripemd160::hash( const string& s ) { return hash( s.c_str(), s.size() ); } void ripemd160::encoder::write( const char* d, uint32_t dlen ) { RIPEMD160_Update( &my->ctx, d, dlen); } ripemd160 ripemd160::encoder::result() { ripemd160 h; RIPEMD160_Final((uint8_t*)h.data(), &my->ctx ); return h; } void ripemd160::encoder::reset() { RIPEMD160_Init( &my->ctx); } ripemd160 operator << ( const ripemd160& h1, uint32_t i ) { ripemd160 result; uint8_t* r = (uint8_t*)result._hash; uint8_t* s = (uint8_t*)h1._hash; for( uint32_t p = 0; p < sizeof(h1._hash)-1; ++p ) r[p] = s[p] << i | (s[p+1]>>(8-i)); r[19] = s[19] << i; return result; } ripemd160 operator ^ ( const ripemd160& h1, const ripemd160& h2 ) { ripemd160 result; result._hash[0] = h1._hash[0] ^ h2._hash[0]; result._hash[1] = h1._hash[1] ^ h2._hash[1]; result._hash[2] = h1._hash[2] ^ h2._hash[2]; result._hash[3] = h1._hash[3] ^ h2._hash[3]; result._hash[4] = h1._hash[4] ^ h2._hash[4]; return result; } bool operator >= ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) >= 0; } bool operator > ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) > 0; } bool operator < ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) < 0; } bool operator != ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) != 0; } bool operator == ( const ripemd160& h1, const ripemd160& h2 ) { return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) == 0; } void to_variant( const ripemd160& bi, variant& v ) { v = std::vector( (const char*)&bi, ((const char*)&bi) + sizeof(bi) ); } void from_variant( const variant& v, ripemd160& bi ) { std::vector ve = v.as< std::vector >(); if( ve.size() ) { memcpy(&bi, ve.data(), fc::min(ve.size(),sizeof(bi)) ); } else memset( &bi, char(0), sizeof(bi) ); } } // fc