#include #include #include #include #include #include #include #include namespace fc { namespace ecc { namespace detail { static void init_lib() { static int init_s = 0; static int init_o = init_openssl(); if (!init_s) { secp256k1_start(SECP256K1_START_VERIFY | SECP256K1_START_SIGN); init_s = 1; } } typedef public_key_data pub_data_type; typedef EC_KEY priv_data_type; #include "_elliptic_impl.cpp" void public_key_impl::free_key() { if( _key != nullptr ) { delete _key; _key = nullptr; } } public_key_data* public_key_impl::dup_key( const public_key_data* cpy ) { return new public_key_data( *cpy ); } void public_key_impl::copy_key( public_key_data* to, const public_key_data* from ) { *to = *from; } void private_key_impl::free_key() { if( _key != nullptr ) { EC_KEY_free(_key); _key = nullptr; } } EC_KEY* private_key_impl::dup_key( const EC_KEY* cpy ) { return EC_KEY_dup( cpy ); } void private_key_impl::copy_key( EC_KEY* to, const EC_KEY* from ) { EC_KEY_copy( to, from ); } } public_key public_key::add( const fc::sha256& digest )const { FC_ASSERT( my->_key != nullptr ); public_key_data new_key; memcpy( new_key.begin(), my->_key->begin(), new_key.size() ); FC_ASSERT( secp256k1_ec_pubkey_tweak_add( (unsigned char*) new_key.begin(), new_key.size(), (unsigned char*) digest.data() ) ); return public_key( new_key ); } std::string public_key::to_base58() const { FC_ASSERT( my->_key != nullptr ); return to_base58( *my->_key ); } public_key_data public_key::serialize()const { FC_ASSERT( my->_key != nullptr ); return *my->_key; } public_key_point_data public_key::serialize_ecc_point()const { FC_ASSERT( my->_key != nullptr ); public_key_point_data dat; unsigned int pk_len = my->_key->size(); memcpy( dat.begin(), my->_key->begin(), pk_len ); FC_ASSERT( secp256k1_ec_pubkey_decompress( (unsigned char *) dat.begin(), (int*) &pk_len ) ); FC_ASSERT( pk_len == dat.size() ); return dat; } public_key::public_key( const public_key_point_data& dat ) { const char* front = &dat.data[0]; if( *front == 0 ){} else { EC_KEY *key = EC_KEY_new_by_curve_name( NID_secp256k1 ); key = o2i_ECPublicKey( &key, (const unsigned char**)&front, sizeof(dat) ); FC_ASSERT( key ); EC_KEY_set_conv_form( key, POINT_CONVERSION_COMPRESSED ); my->_key = new public_key_data(); unsigned char* buffer = (unsigned char*) my->_key->begin(); i2o_ECPublicKey( key, &buffer ); // FIXME: questionable memory handling EC_KEY_free( key ); } } public_key::public_key( const public_key_data& dat ) { my->_key = new public_key_data(dat); } public_key::public_key( const compact_signature& c, const fc::sha256& digest, bool check_canonical ) { int nV = c.data[0]; if (nV<27 || nV>=35) FC_THROW_EXCEPTION( exception, "unable to reconstruct public key from signature" ); if( check_canonical ) { FC_ASSERT( is_canonical( c ), "signature is not canonical" ); } my->_key = new public_key_data(); unsigned int pk_len; FC_ASSERT( secp256k1_ecdsa_recover_compact( (unsigned char*) digest.data(), (unsigned char*) c.begin() + 1, (unsigned char*) my->_key->begin(), (int*) &pk_len, 1, (*c.begin() - 27) & 3 ) ); FC_ASSERT( pk_len == my->_key->size() ); } static void * ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen) { if (*olen < SHA512_DIGEST_LENGTH) { return NULL; } *olen = SHA512_DIGEST_LENGTH; return (void*)SHA512((const unsigned char*)input, ilen, (unsigned char*)output); } // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields // recid selects which key is recovered // if check is non-zero, additional checks are performed static int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check) { if (!eckey) FC_THROW_EXCEPTION( exception, "null key" ); int ret = 0; BN_CTX *ctx = NULL; BIGNUM *x = NULL; BIGNUM *e = NULL; BIGNUM *order = NULL; BIGNUM *sor = NULL; BIGNUM *eor = NULL; BIGNUM *field = NULL; EC_POINT *R = NULL; EC_POINT *O = NULL; EC_POINT *Q = NULL; BIGNUM *rr = NULL; BIGNUM *zero = NULL; int n = 0; int i = recid / 2; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; } BN_CTX_start(ctx); order = BN_CTX_get(ctx); if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; } x = BN_CTX_get(ctx); if (!BN_copy(x, order)) { ret=-1; goto err; } if (!BN_mul_word(x, i)) { ret=-1; goto err; } if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; } field = BN_CTX_get(ctx); if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; } if (BN_cmp(x, field) >= 0) { ret=0; goto err; } if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; } if (check) { if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; } if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; } } if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } n = EC_GROUP_get_degree(group); e = BN_CTX_get(ctx); if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; } if (8*msglen > n) BN_rshift(e, e, 8-(n & 7)); zero = BN_CTX_get(ctx); if (!BN_zero(zero)) { ret=-1; goto err; } if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; } rr = BN_CTX_get(ctx); if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; } sor = BN_CTX_get(ctx); if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; } eor = BN_CTX_get(ctx); if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; } if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; } if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; } ret = 1; err: if (ctx) { BN_CTX_end(ctx); BN_CTX_free(ctx); } if (R != NULL) EC_POINT_free(R); if (O != NULL) EC_POINT_free(O); if (Q != NULL) EC_POINT_free(Q); return ret; } int static inline EC_KEY_regenerate_key(EC_KEY *eckey, const BIGNUM *priv_key) { int ok = 0; BN_CTX *ctx = NULL; EC_POINT *pub_key = NULL; if (!eckey) return 0; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) goto err; pub_key = EC_POINT_new(group); if (pub_key == NULL) goto err; if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx)) goto err; EC_KEY_set_private_key(eckey,priv_key); EC_KEY_set_public_key(eckey,pub_key); ok = 1; err: if (pub_key) EC_POINT_free(pub_key); if (ctx != NULL) BN_CTX_free(ctx); return(ok); } private_key private_key::regenerate( const fc::sha256& secret ) { private_key self; self.my->_key = EC_KEY_new_by_curve_name( NID_secp256k1 ); if( !self.my->_key ) FC_THROW_EXCEPTION( exception, "Unable to generate EC key" ); ssl_bignum bn; BN_bin2bn( (const unsigned char*)&secret, 32, bn ); if( !EC_KEY_regenerate_key(self.my->_key,bn) ) { FC_THROW_EXCEPTION( exception, "unable to regenerate key" ); } return self; } fc::sha256 private_key::get_secret()const { return get_secret( my->_key ); } private_key::private_key( EC_KEY* k ) { my->_key = k; } public_key private_key::get_public_key()const { public_key_data data; EC_KEY_set_conv_form( my->_key, POINT_CONVERSION_COMPRESSED ); unsigned char* buffer = (unsigned char*) data.begin(); i2o_ECPublicKey( my->_key, &buffer ); // FIXME: questionable memory handling return public_key( data ); } fc::sha512 private_key::get_shared_secret( const public_key& other )const { FC_ASSERT( my->_key != nullptr ); FC_ASSERT( other.my->_key != nullptr ); fc::sha512 buf; EC_KEY* key = EC_KEY_new_by_curve_name( NID_secp256k1 ); const unsigned char* buffer = (const unsigned char*) other.my->_key->begin(); o2i_ECPublicKey( &key, &buffer, sizeof(*other.my->_key) ); ECDH_compute_key( (unsigned char*)&buf, sizeof(buf), EC_KEY_get0_public_key(key), my->_key, ecies_key_derivation ); EC_KEY_free(key); return buf; } compact_signature private_key::sign_compact( const fc::sha256& digest )const { try { FC_ASSERT( my->_key != nullptr ); auto my_pub_key = get_public_key().serialize(); // just for good measure //ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&digest, sizeof(digest), my->_key); public_key_data key_data; while( true ) { ecdsa_sig sig = ECDSA_do_sign((unsigned char*)&digest, sizeof(digest), my->_key); if (sig==nullptr) FC_THROW_EXCEPTION( exception, "Unable to sign" ); compact_signature csig; // memset( csig.data, 0, sizeof(csig) ); int nBitsR = BN_num_bits(sig->r); int nBitsS = BN_num_bits(sig->s); if (nBitsR <= 256 && nBitsS <= 256) { int nRecId = -1; EC_KEY* key = EC_KEY_new_by_curve_name( NID_secp256k1 ); FC_ASSERT( key ); EC_KEY_set_conv_form( key, POINT_CONVERSION_COMPRESSED ); for (int i=0; i<4; i++) { if (ECDSA_SIG_recover_key_GFp(key, sig, (unsigned char*)&digest, sizeof(digest), i, 1) == 1) { unsigned char* buffer = (unsigned char*) key_data.begin(); i2o_ECPublicKey( key, &buffer ); // FIXME: questionable memory handling if ( key_data == my_pub_key ) { nRecId = i; break; } } } EC_KEY_free( key ); if (nRecId == -1) { FC_THROW_EXCEPTION( exception, "unable to construct recoverable key"); } unsigned char* result = nullptr; auto bytes = i2d_ECDSA_SIG( sig, &result ); auto lenR = result[3]; auto lenS = result[5+lenR]; //idump( (result[0])(result[1])(result[2])(result[3])(result[3+lenR])(result[4+lenR])(bytes)(lenR)(lenS) ); if( lenR != 32 ) { free(result); continue; } if( lenS != 32 ) { free(result); continue; } //idump( (33-(nBitsR+7)/8) ); //idump( (65-(nBitsS+7)/8) ); //idump( (sizeof(csig) ) ); memcpy( &csig.data[1], &result[4], lenR ); memcpy( &csig.data[33], &result[6+lenR], lenS ); //idump( (csig.data[33]) ); //idump( (csig.data[1]) ); free(result); //idump( (nRecId) ); csig.data[0] = nRecId+27+4;//(fCompressedPubKey ? 4 : 0); /* idump( (csig) ); auto rlen = BN_bn2bin(sig->r,&csig.data[33-(nBitsR+7)/8]); auto slen = BN_bn2bin(sig->s,&csig.data[65-(nBitsS+7)/8]); idump( (rlen)(slen) ); */ } return csig; } // while true } FC_RETHROW_EXCEPTIONS( warn, "sign ${digest}", ("digest", digest)("private_key",*this) ); } } } #include "_elliptic_common.cpp"