// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin Developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. // // Why base-58 instead of standard base-64 encoding? // - Don't want 0OIl characters that look the same in some fonts and // could be used to create visually identical looking account numbers. // - A string with non-alphanumeric characters is not as easily accepted as an account number. // - E-mail usually won't line-break if there's no punctuation to break at. // - Doubleclicking selects the whole number as one word if it's all alphanumeric. // #ifndef BITCOIN_BASE58_H #define BITCOIN_BASE58_H #include #include #include #include #include #include #include #include #include #include #include #include /** Errors thrown by the bignum class */ class bignum_error : public std::runtime_error { public: explicit bignum_error(const std::string& str) : std::runtime_error(str) {} }; /** RAII encapsulated BN_CTX (OpenSSL bignum context) */ class CAutoBN_CTX { protected: BN_CTX* pctx; BN_CTX* operator=(BN_CTX* pnew) { return pctx = pnew; } public: CAutoBN_CTX() { pctx = BN_CTX_new(); if (pctx == NULL) throw bignum_error("CAutoBN_CTX : BN_CTX_new() returned NULL"); } ~CAutoBN_CTX() { if (pctx != NULL) BN_CTX_free(pctx); } operator BN_CTX*() { return pctx; } BN_CTX& operator*() { return *pctx; } BN_CTX** operator&() { return &pctx; } bool operator!() { return (pctx == NULL); } }; /** C++ wrapper for BIGNUM (OpenSSL bignum) */ class CBigNum : public BIGNUM { public: CBigNum() { BN_init(this); } CBigNum(const CBigNum& b) { BN_init(this); if (!BN_copy(this, &b)) { BN_clear_free(this); throw bignum_error("CBigNum::CBigNum(const CBigNum&) : BN_copy failed"); } } CBigNum& operator=(const CBigNum& b) { if (!BN_copy(this, &b)) throw bignum_error("CBigNum::operator= : BN_copy failed"); return (*this); } ~CBigNum() { BN_clear_free(this); } //CBigNum(char n) is not portable. Use 'signed char' or 'unsigned char'. CBigNum(signed char n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } CBigNum(short n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } CBigNum(int n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } //CBigNum(long n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); } CBigNum(int64_t n) { BN_init(this); setint64(n); } CBigNum(unsigned char n) { BN_init(this); setulong(n); } CBigNum(unsigned short n) { BN_init(this); setulong(n); } CBigNum(unsigned int n) { BN_init(this); setulong(n); } //CBigNum(unsigned long n) { BN_init(this); setulong(n); } CBigNum(uint64_t n) { BN_init(this); setuint64(n); } explicit CBigNum(const std::vector& vch) { BN_init(this); setvch(vch); } void setulong(unsigned long n) { if (!BN_set_word(this, n)) throw bignum_error("CBigNum conversion from unsigned long : BN_set_word failed"); } unsigned long getulong() const { return BN_get_word(this); } unsigned int getuint() const { return BN_get_word(this); } int getint() const { unsigned long n = BN_get_word(this); if (!BN_is_negative(this)) return (n > (unsigned long)std::numeric_limits::max() ? std::numeric_limits::max() : n); else return (n > (unsigned long)std::numeric_limits::max() ? std::numeric_limits::min() : -(int)n); } void setint64(int64_t n) { unsigned char pch[sizeof(n) + 6]; unsigned char* p = pch + 4; bool fNegative = false; if (n < (int64_t)0) { n = -n; fNegative = true; } bool fLeadingZeroes = true; for (int i = 0; i < 8; i++) { unsigned char c = (n >> 56) & 0xff; n <<= 8; if (fLeadingZeroes) { if (c == 0) continue; if (c & 0x80) *p++ = (fNegative ? 0x80 : 0); else if (fNegative) c |= 0x80; fLeadingZeroes = false; } *p++ = c; } unsigned int nSize = p - (pch + 4); pch[0] = (nSize >> 24) & 0xff; pch[1] = (nSize >> 16) & 0xff; pch[2] = (nSize >> 8) & 0xff; pch[3] = (nSize) & 0xff; BN_mpi2bn(pch, p - pch, this); } void setuint64(uint64_t n) { unsigned char pch[sizeof(n) + 6]; unsigned char* p = pch + 4; bool fLeadingZeroes = true; for (int i = 0; i < 8; i++) { unsigned char c = (n >> 56) & 0xff; n <<= 8; if (fLeadingZeroes) { if (c == 0) continue; if (c & 0x80) *p++ = 0; fLeadingZeroes = false; } *p++ = c; } unsigned int nSize = p - (pch + 4); pch[0] = (nSize >> 24) & 0xff; pch[1] = (nSize >> 16) & 0xff; pch[2] = (nSize >> 8) & 0xff; pch[3] = (nSize) & 0xff; BN_mpi2bn(pch, p - pch, this); } void setvch(const std::vector& vch) { std::vector vch2(vch.size() + 4); unsigned int nSize = vch.size(); // BIGNUM's byte stream format expects 4 bytes of // big endian size data info at the front vch2[0] = (nSize >> 24) & 0xff; vch2[1] = (nSize >> 16) & 0xff; vch2[2] = (nSize >> 8) & 0xff; vch2[3] = (nSize >> 0) & 0xff; // swap data to big endian reverse_copy(vch.begin(), vch.end(), vch2.begin() + 4); BN_mpi2bn(&vch2[0], vch2.size(), this); } std::vector getvch() const { unsigned int nSize = BN_bn2mpi(this, NULL); if (nSize <= 4) return std::vector(); std::vector vch(nSize); BN_bn2mpi(this, &vch[0]); vch.erase(vch.begin(), vch.begin() + 4); reverse(vch.begin(), vch.end()); return vch; } CBigNum& SetCompact(unsigned int nCompact) { unsigned int nSize = nCompact >> 24; std::vector vch(4 + nSize); vch[3] = nSize; if (nSize >= 1) vch[4] = (nCompact >> 16) & 0xff; if (nSize >= 2) vch[5] = (nCompact >> 8) & 0xff; if (nSize >= 3) vch[6] = (nCompact >> 0) & 0xff; BN_mpi2bn(&vch[0], vch.size(), this); return *this; } unsigned int GetCompact() const { unsigned int nSize = BN_bn2mpi(this, NULL); std::vector vch(nSize); nSize -= 4; BN_bn2mpi(this, &vch[0]); unsigned int nCompact = nSize << 24; if (nSize >= 1) nCompact |= (vch[4] << 16); if (nSize >= 2) nCompact |= (vch[5] << 8); if (nSize >= 3) nCompact |= (vch[6] << 0); return nCompact; } void SetHex(const std::string& str) { // skip 0x const char* psz = str.c_str(); while (isspace(*psz)) psz++; bool fNegative = false; if (*psz == '-') { fNegative = true; psz++; } if (psz[0] == '0' && tolower(psz[1]) == 'x') psz += 2; while (isspace(*psz)) psz++; // hex string to bignum static signed char phexdigit[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0 }; *this = 0; while (isxdigit(*psz)) { *this <<= 4; int n = phexdigit[(unsigned char)*psz++]; *this += n; } if (fNegative) *this = 0 - *this; } std::string ToString(int nBase=10) const { CAutoBN_CTX pctx; CBigNum bnBase = nBase; CBigNum bn0 = 0; std::string str; CBigNum bn = *this; BN_set_negative(&bn, false); CBigNum dv; CBigNum rem; if (BN_cmp(&bn, &bn0) == 0) return "0"; while (BN_cmp(&bn, &bn0) > 0) { if (!BN_div(&dv, &rem, &bn, &bnBase, pctx)) throw bignum_error("CBigNum::ToString() : BN_div failed"); bn = dv; unsigned int c = rem.getulong(); str += "0123456789abcdef"[c]; } if (BN_is_negative(this)) str += "-"; reverse(str.begin(), str.end()); return str; } std::string GetHex() const { return ToString(16); } bool operator!() const { return BN_is_zero(this); } CBigNum& operator+=(const CBigNum& b) { if (!BN_add(this, this, &b)) throw bignum_error("CBigNum::operator+= : BN_add failed"); return *this; } CBigNum& operator-=(const CBigNum& b) { *this = *this - b; return *this; } CBigNum& operator*=(const CBigNum& b) { CAutoBN_CTX pctx; if (!BN_mul(this, this, &b, pctx)) throw bignum_error("CBigNum::operator*= : BN_mul failed"); return *this; } CBigNum& operator/=(const CBigNum& b) { *this = *this / b; return *this; } CBigNum& operator%=(const CBigNum& b) { *this = *this % b; return *this; } CBigNum& operator<<=(unsigned int shift) { if (!BN_lshift(this, this, shift)) throw bignum_error("CBigNum:operator<<= : BN_lshift failed"); return *this; } CBigNum& operator>>=(unsigned int shift) { // Note: BN_rshift segfaults on 64-bit if 2^shift is greater than the number // if built on ubuntu 9.04 or 9.10, probably depends on version of openssl CBigNum a = 1; a <<= shift; if (BN_cmp(&a, this) > 0) { *this = 0; return *this; } if (!BN_rshift(this, this, shift)) throw bignum_error("CBigNum:operator>>= : BN_rshift failed"); return *this; } CBigNum& operator++() { // prefix operator if (!BN_add(this, this, BN_value_one())) throw bignum_error("CBigNum::operator++ : BN_add failed"); return *this; } const CBigNum operator++(int) { // postfix operator const CBigNum ret = *this; ++(*this); return ret; } CBigNum& operator--() { // prefix operator CBigNum r; if (!BN_sub(&r, this, BN_value_one())) throw bignum_error("CBigNum::operator-- : BN_sub failed"); *this = r; return *this; } const CBigNum operator--(int) { // postfix operator const CBigNum ret = *this; --(*this); return ret; } friend inline const CBigNum operator-(const CBigNum& a, const CBigNum& b); friend inline const CBigNum operator/(const CBigNum& a, const CBigNum& b); friend inline const CBigNum operator%(const CBigNum& a, const CBigNum& b); }; inline const CBigNum operator+(const CBigNum& a, const CBigNum& b) { CBigNum r; if (!BN_add(&r, &a, &b)) throw bignum_error("CBigNum::operator+ : BN_add failed"); return r; } inline const CBigNum operator-(const CBigNum& a, const CBigNum& b) { CBigNum r; if (!BN_sub(&r, &a, &b)) throw bignum_error("CBigNum::operator- : BN_sub failed"); return r; } inline const CBigNum operator-(const CBigNum& a) { CBigNum r(a); BN_set_negative(&r, !BN_is_negative(&r)); return r; } inline const CBigNum operator*(const CBigNum& a, const CBigNum& b) { CAutoBN_CTX pctx; CBigNum r; if (!BN_mul(&r, &a, &b, pctx)) throw bignum_error("CBigNum::operator* : BN_mul failed"); return r; } inline const CBigNum operator/(const CBigNum& a, const CBigNum& b) { CAutoBN_CTX pctx; CBigNum r; if (!BN_div(&r, NULL, &a, &b, pctx)) throw bignum_error("CBigNum::operator/ : BN_div failed"); return r; } inline const CBigNum operator%(const CBigNum& a, const CBigNum& b) { CAutoBN_CTX pctx; CBigNum r; if (!BN_mod(&r, &a, &b, pctx)) throw bignum_error("CBigNum::operator% : BN_div failed"); return r; } inline const CBigNum operator<<(const CBigNum& a, unsigned int shift) { CBigNum r; if (!BN_lshift(&r, &a, shift)) throw bignum_error("CBigNum:operator<< : BN_lshift failed"); return r; } inline const CBigNum operator>>(const CBigNum& a, unsigned int shift) { CBigNum r = a; r >>= shift; return r; } inline bool operator==(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) == 0); } inline bool operator!=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) != 0); } inline bool operator<=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) <= 0); } inline bool operator>=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) >= 0); } inline bool operator<(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) < 0); } inline bool operator>(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) > 0); } static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; // Encode a byte sequence as a base58-encoded string inline std::string EncodeBase58(const unsigned char* pbegin, const unsigned char* pend) { CAutoBN_CTX pctx; CBigNum bn58 = 58; CBigNum bn0 = 0; // Convert big endian data to little endian // Extra zero at the end make sure bignum will interpret as a positive number std::vector vchTmp(pend-pbegin+1, 0); reverse_copy(pbegin, pend, vchTmp.begin()); // Convert little endian data to bignum CBigNum bn; bn.setvch(vchTmp); // Convert bignum to std::string std::string str; // Expected size increase from base58 conversion is approximately 137% // use 138% to be safe str.reserve((pend - pbegin) * 138 / 100 + 1); CBigNum dv; CBigNum rem; while (bn > bn0) { if (!BN_div(&dv, &rem, &bn, &bn58, pctx)) throw bignum_error("EncodeBase58 : BN_div failed"); bn = dv; unsigned int c = rem.getulong(); str += pszBase58[c]; } // Leading zeroes encoded as base58 zeros for (const unsigned char* p = pbegin; p < pend && *p == 0; p++) str += pszBase58[0]; // Convert little endian std::string to big endian reverse(str.begin(), str.end()); // slog( "Encode '%s'", str.c_str() ); return str; } // Encode a byte vector as a base58-encoded string inline std::string EncodeBase58(const std::vector& vch) { return EncodeBase58(&vch[0], &vch[0] + vch.size()); } // Decode a base58-encoded string psz into byte vector vchRet // returns true if decoding is succesful inline bool DecodeBase58(const char* psz, std::vector& vchRet) { CAutoBN_CTX pctx; vchRet.clear(); CBigNum bn58 = 58; CBigNum bn = 0; CBigNum bnChar; while (isspace(*psz)) psz++; // Convert big endian string to bignum for (const char* p = psz; *p; p++) { const char* p1 = strchr(pszBase58, *p); if (p1 == NULL) { while (isspace(*p)) p++; if (*p != '\0') { slog( "%s '%c'", pszBase58,*p ); return false; } break; } bnChar.setulong(p1 - pszBase58); if (!BN_mul(&bn, &bn, &bn58, pctx)) throw bignum_error("DecodeBase58 : BN_mul failed"); bn += bnChar; } // Get bignum as little endian data std::vector vchTmp = bn.getvch(); // Trim off sign byte if present if (vchTmp.size() >= 2 && vchTmp.end()[-1] == 0 && vchTmp.end()[-2] >= 0x80) vchTmp.erase(vchTmp.end()-1); // Restore leading zeros int nLeadingZeros = 0; for (const char* p = psz; *p == pszBase58[0]; p++) nLeadingZeros++; vchRet.assign(nLeadingZeros + vchTmp.size(), 0); // Convert little endian data to big endian reverse_copy(vchTmp.begin(), vchTmp.end(), vchRet.end() - vchTmp.size()); return true; } // Decode a base58-encoded string str into byte vector vchRet // returns true if decoding is succesful inline bool DecodeBase58(const std::string& str, std::vector& vchRet) { return DecodeBase58(str.c_str(), vchRet); } namespace fc { fc::string to_base58( const char* d, uint32_t s ) { return EncodeBase58( (const unsigned char*)d, (const unsigned char*)d+s ).c_str(); } /** * @return the number of bytes decoded */ size_t from_base58( const fc::string& base58_str, char* out_data, size_t out_data_len ) { //slog( "%s", base58_str.c_str() ); std::vector out; if( !DecodeBase58( base58_str.c_str(), out ) ) { FC_THROW_REPORT( "Unable to decode base58 string ${base58_str}", fc::value().set("base58_str",base58_str) ); } memcpy( out_data, out.data(), out.size() ); return out.size(); } } #endif