peerplays-fc/src/crypto/aes.cpp
2022-02-09 15:41:41 -04:00

386 lines
13 KiB
C++
Executable file

#include <fc/crypto/aes.hpp>
#include <fc/crypto/openssl.hpp>
#include <fc/exception/exception.hpp>
#include <fc/fwd_impl.hpp>
#include <fc/io/fstream.hpp>
#include <fc/io/raw.hpp>
#include <fc/log/logger.hpp>
#include <fc/thread/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <openssl/opensslconf.h>
#ifndef OPENSSL_THREADS
# error "OpenSSL must be configured to support threads"
#endif
#include <openssl/crypto.h>
#if defined(_WIN32)
# include <windows.h>
#endif
namespace fc {
struct aes_encoder::impl
{
evp_cipher_ctx ctx;
};
aes_encoder::aes_encoder()
{
static int init = init_openssl();
(void)init;
}
aes_encoder::~aes_encoder()
{
}
void aes_encoder::init( const fc::sha256& key, const fc::uint128& init_value )
{
my->ctx.obj = EVP_CIPHER_CTX_new();
/* Create and initialise the context */
if(!my->ctx)
{
FC_THROW_EXCEPTION( aes_exception, "error allocating evp cipher context",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Initialise the encryption operation. IMPORTANT - ensure you use a key
* and IV size appropriate for your cipher
* In this example we are using 256 bit AES (i.e. a 256 bit key). The
* IV size for *most* modes is the same as the block size. For AES this
* is 128 bits */
if(1 != EVP_EncryptInit_ex(my->ctx, EVP_aes_256_cbc(), NULL, (unsigned char*)&key, (unsigned char*)&init_value))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc encryption init",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
EVP_CIPHER_CTX_set_padding( my->ctx, 0 );
}
uint32_t aes_encoder::encode( const char* plaintxt, uint32_t plaintext_len, char* ciphertxt )
{
int ciphertext_len = 0;
/* Provide the message to be encrypted, and obtain the encrypted output.
* * EVP_EncryptUpdate can be called multiple times if necessary
* */
if(1 != EVP_EncryptUpdate(my->ctx, (unsigned char*)ciphertxt, &ciphertext_len, (const unsigned char*)plaintxt, plaintext_len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc encryption update",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
int64_t ciphertext_len_i64 = ciphertext_len;
int64_t plaintext_len_i64 = plaintext_len;
FC_ASSERT( ciphertext_len_i64 == plaintext_len_i64, "", ("ciphertext_len",ciphertext_len)("plaintext_len",plaintext_len) );
return ciphertext_len;
}
#if 0
uint32_t aes_encoder::final_encode( char* ciphertxt )
{
int ciphertext_len = 0;
/* Finalise the encryption. Further ciphertext bytes may be written at
* * this stage.
* */
if(1 != EVP_EncryptFinal_ex(my->ctx, (unsigned char*)ciphertxt, &ciphertext_len))
{
FC_THROW_EXCEPTION( exception, "error during aes 256 cbc encryption final",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
return ciphertext_len;
}
#endif
struct aes_decoder::impl
{
evp_cipher_ctx ctx;
};
aes_decoder::aes_decoder()
{
static int init = init_openssl();
(void)init;
}
void aes_decoder::init( const fc::sha256& key, const fc::uint128& init_value )
{
my->ctx.obj = EVP_CIPHER_CTX_new();
/* Create and initialise the context */
if(!my->ctx)
{
FC_THROW_EXCEPTION( aes_exception, "error allocating evp cipher context",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Initialise the encryption operation. IMPORTANT - ensure you use a key
* and IV size appropriate for your cipher
* In this example we are using 256 bit AES (i.e. a 256 bit key). The
* IV size for *most* modes is the same as the block size. For AES this
* is 128 bits */
if(1 != EVP_DecryptInit_ex(my->ctx, EVP_aes_256_cbc(), NULL, (unsigned char*)&key, (unsigned char*)&init_value))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc encryption init",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
EVP_CIPHER_CTX_set_padding( my->ctx, 0 );
}
aes_decoder::~aes_decoder()
{
}
uint32_t aes_decoder::decode( const char* ciphertxt, uint32_t ciphertxt_len, char* plaintext )
{
int plaintext_len = 0;
/* Provide the message to be decrypted, and obtain the decrypted output.
* * EVP_DecryptUpdate can be called multiple times if necessary
* */
if (1 != EVP_DecryptUpdate(my->ctx, (unsigned char*)plaintext, &plaintext_len, (const unsigned char*)ciphertxt, ciphertxt_len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc decryption update",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
int64_t ciphertxt_len_i64 = ciphertxt_len;
int64_t plaintext_len_i64 = plaintext_len;
FC_ASSERT( ciphertxt_len_i64 == plaintext_len_i64, "", ("ciphertxt_len",ciphertxt_len)("plaintext_len",plaintext_len) );
return plaintext_len;
}
#if 0
uint32_t aes_decoder::final_decode( char* plaintext )
{
return 0;
int ciphertext_len = 0;
/* Finalise the encryption. Further ciphertext bytes may be written at
* * this stage.
* */
if(1 != EVP_DecryptFinal_ex(my->ctx, (unsigned char*)plaintext, &ciphertext_len))
{
FC_THROW_EXCEPTION( exception, "error during aes 256 cbc encryption final",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
return ciphertext_len;
}
#endif
/** example method from wiki.opensslfoundation.com */
unsigned aes_encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key,
unsigned char *iv, unsigned char *ciphertext)
{
evp_cipher_ctx ctx( EVP_CIPHER_CTX_new() );
int len = 0;
unsigned ciphertext_len = 0;
/* Create and initialise the context */
if(!ctx)
{
FC_THROW_EXCEPTION( aes_exception, "error allocating evp cipher context",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Initialise the encryption operation. IMPORTANT - ensure you use a key
* and IV size appropriate for your cipher
* In this example we are using 256 bit AES (i.e. a 256 bit key). The
* IV size for *most* modes is the same as the block size. For AES this
* is 128 bits */
if(1 != EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc encryption init",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Provide the message to be encrypted, and obtain the encrypted output.
* * EVP_EncryptUpdate can be called multiple times if necessary
* */
if(1 != EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc encryption update",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
ciphertext_len = len;
/* Finalise the encryption. Further ciphertext bytes may be written at
* * this stage.
* */
if(1 != EVP_EncryptFinal_ex(ctx, ciphertext + len, &len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc encryption final",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
ciphertext_len += len;
return ciphertext_len;
}
unsigned aes_decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *key,
unsigned char *iv, unsigned char *plaintext)
{
evp_cipher_ctx ctx( EVP_CIPHER_CTX_new() );
int len = 0;
unsigned plaintext_len = 0;
/* Create and initialise the context */
if(!ctx)
{
FC_THROW_EXCEPTION( aes_exception, "error allocating evp cipher context",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Initialise the decryption operation. IMPORTANT - ensure you use a key
* * and IV size appropriate for your cipher
* * In this example we are using 256 bit AES (i.e. a 256 bit key). The
* * IV size for *most* modes is the same as the block size. For AES this
* * is 128 bits */
if(1 != EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc decrypt init",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Provide the message to be decrypted, and obtain the plaintext output.
* * EVP_DecryptUpdate can be called multiple times if necessary
* */
if(1 != EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc decrypt update",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
plaintext_len = len;
/* Finalise the decryption. Further plaintext bytes may be written at
* * this stage.
* */
if(1 != EVP_DecryptFinal_ex(ctx, plaintext + len, &len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc decrypt final",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
plaintext_len += len;
return plaintext_len;
}
unsigned aes_cfb_decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *key,
unsigned char *iv, unsigned char *plaintext)
{
evp_cipher_ctx ctx( EVP_CIPHER_CTX_new() );
int len = 0;
unsigned plaintext_len = 0;
/* Create and initialise the context */
if(!ctx)
{
FC_THROW_EXCEPTION( aes_exception, "error allocating evp cipher context",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Initialise the decryption operation. IMPORTANT - ensure you use a key
* * and IV size appropriate for your cipher
* * In this example we are using 256 bit AES (i.e. a 256 bit key). The
* * IV size for *most* modes is the same as the block size. For AES this
* * is 128 bits */
if(1 != EVP_DecryptInit_ex(ctx, EVP_aes_256_cfb128(), NULL, key, iv))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc decrypt init",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
/* Provide the message to be decrypted, and obtain the plaintext output.
* * EVP_DecryptUpdate can be called multiple times if necessary
* */
if(1 != EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc decrypt update",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
plaintext_len = len;
/* Finalise the decryption. Further plaintext bytes may be written at
* * this stage.
* */
if(1 != EVP_DecryptFinal_ex(ctx, plaintext + len, &len))
{
FC_THROW_EXCEPTION( aes_exception, "error during aes 256 cbc decrypt final",
("s", ERR_error_string( ERR_get_error(), nullptr) ) );
}
plaintext_len += len;
return plaintext_len;
}
std::vector<char> aes_encrypt( const fc::sha512& key, const std::vector<char>& plain_text )
{
std::vector<char> cipher_text(plain_text.size()+16);
auto cipher_len = aes_encrypt( (unsigned char*)plain_text.data(), (int)plain_text.size(),
(unsigned char*)&key, ((unsigned char*)&key)+32,
(unsigned char*)cipher_text.data() );
FC_ASSERT( cipher_len <= cipher_text.size() );
cipher_text.resize(cipher_len);
return cipher_text;
}
std::vector<char> aes_decrypt( const fc::sha512& key, const std::vector<char>& cipher_text )
{
std::vector<char> plain_text( cipher_text.size() );
auto plain_len = aes_decrypt( (unsigned char*)cipher_text.data(), (int)cipher_text.size(),
(unsigned char*)&key, ((unsigned char*)&key)+32,
(unsigned char*)plain_text.data() );
plain_text.resize(plain_len);
return plain_text;
}
/** encrypts plain_text and then includes a checksum that enables us to verify the integrety of
* the file / key prior to decryption.
*/
void aes_save( const fc::path& file, const fc::sha512& key, std::vector<char> plain_text )
{ try {
auto cipher = aes_encrypt( key, plain_text );
fc::sha512::encoder check_enc;
fc::raw::pack( check_enc, key );
fc::raw::pack( check_enc, cipher );
auto check = check_enc.result();
fc::ofstream out(file);
fc::raw::pack( out, check );
fc::raw::pack( out, cipher );
} FC_RETHROW_EXCEPTIONS( warn, "", ("file",file) ) }
/**
* recovers the plain_text saved via aes_save()
*/
std::vector<char> aes_load( const fc::path& file, const fc::sha512& key )
{ try {
FC_ASSERT( fc::exists( file ) );
fc::ifstream in( file, fc::ifstream::binary );
fc::sha512 check;
std::vector<char> cipher;
fc::raw::unpack( in, check );
fc::raw::unpack( in, cipher );
fc::sha512::encoder check_enc;
fc::raw::pack( check_enc, key );
fc::raw::pack( check_enc, cipher );
FC_ASSERT( check_enc.result() == check );
return aes_decrypt( key, cipher );
} FC_RETHROW_EXCEPTIONS( warn, "", ("file",file) ) }
} // namespace fc