peerplays-fc/src/crypto/sha256.cpp
2019-08-20 11:25:15 +02:00

216 lines
6.8 KiB
C++
Executable file

#include <fc/crypto/hex.hpp>
#include <fc/crypto/hmac.hpp>
#include <fc/fwd_impl.hpp>
#include <openssl/sha.h>
#include <string.h>
#include <cmath>
#include <fc/crypto/sha256.hpp>
#include <fc/variant.hpp>
#include <fc/exception/exception.hpp>
#include "_digest_common.hpp"
namespace fc {
sha256::sha256() { memset( _hash, 0, sizeof(_hash) ); }
sha256::sha256( const char *data, size_t size ) {
if (size != sizeof(_hash))
FC_THROW_EXCEPTION( exception, "sha256: size mismatch" );
memcpy(_hash, data, size );
}
sha256::sha256( const string& hex_str ) {
fc::from_hex( hex_str, (char*)_hash, sizeof(_hash) );
}
string sha256::str()const {
return fc::to_hex( (char*)_hash, sizeof(_hash) );
}
sha256::operator string()const { return str(); }
char* sha256::data()const { return (char*)&_hash[0]; }
struct sha256::encoder::impl {
SHA256_CTX ctx;
};
sha256::encoder::~encoder() {}
sha256::encoder::encoder() {
reset();
}
sha256 sha256::hash( const char* d, uint32_t dlen ) {
encoder e;
e.write(d,dlen);
return e.result();
}
sha256 sha256::hash( const string& s ) {
return hash( s.c_str(), s.size() );
}
sha256 sha256::hash( const sha256& s )
{
return hash( s.data(), sizeof( s._hash ) );
}
void sha256::encoder::write( const char* d, uint32_t dlen ) {
SHA256_Update( &my->ctx, d, dlen);
}
sha256 sha256::encoder::result() {
sha256 h;
SHA256_Final((uint8_t*)h.data(), &my->ctx );
return h;
}
void sha256::encoder::reset() {
SHA256_Init( &my->ctx);
}
sha256 operator << ( const sha256& h1, uint32_t i ) {
sha256 result;
fc::detail::shift_l( h1.data(), result.data(), result.data_size(), i );
return result;
}
sha256 operator >> ( const sha256& h1, uint32_t i ) {
sha256 result;
fc::detail::shift_r( h1.data(), result.data(), result.data_size(), i );
return result;
}
sha256 operator ^ ( const sha256& h1, const sha256& h2 ) {
sha256 result;
result._hash[0] = h1._hash[0] ^ h2._hash[0];
result._hash[1] = h1._hash[1] ^ h2._hash[1];
result._hash[2] = h1._hash[2] ^ h2._hash[2];
result._hash[3] = h1._hash[3] ^ h2._hash[3];
return result;
}
bool operator >= ( const sha256& h1, const sha256& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) >= 0;
}
bool operator > ( const sha256& h1, const sha256& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) > 0;
}
bool operator < ( const sha256& h1, const sha256& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) < 0;
}
bool operator != ( const sha256& h1, const sha256& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) != 0;
}
bool operator == ( const sha256& h1, const sha256& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) == 0;
}
uint32_t sha256::approx_log_32()const
{
uint16_t lzbits = clz();
if( lzbits >= 0x100 )
return 0;
uint8_t nzbits = 0xFF-lzbits;
size_t offset = (size_t) (lzbits >> 3);
uint8_t* my_bytes = (uint8_t*) data();
size_t n = data_size();
uint32_t y = (uint32_t( my_bytes[offset ] ) << 0x18)
| (uint32_t(offset+1 < n ? my_bytes[offset+1] : 0) << 0x10)
| (uint32_t(offset+2 < n ? my_bytes[offset+2] : 0) << 0x08)
| (uint32_t(offset+3 < n ? my_bytes[offset+3] : 0) )
;
//
// lzbits&7 == 7 : 00000001 iff nzbits&7 == 0
// lzbits&7 == 6 : 0000001x iff nzbits&7 == 1
// lzbits&7 == 5 : 000001xx iff nzbits&7 == 2
//
y >>= (nzbits & 7);
y ^= 1 << 0x18;
y |= uint32_t( nzbits ) << 0x18;
return y;
}
void sha256::set_to_inverse_approx_log_32( uint32_t x )
{
uint8_t nzbits = uint8_t( x >> 0x18 );
_hash[0] = 0;
_hash[1] = 0;
_hash[2] = 0;
_hash[3] = 0;
if( nzbits == 0 )
return;
uint8_t x0 = uint8_t((x ) & 0xFF);
uint8_t x1 = uint8_t((x >> 0x08) & 0xFF);
uint8_t x2 = uint8_t((x >> 0x10) & 0xFF);
uint8_t* my_bytes = (uint8_t*) data();
my_bytes[0x1F] = x0;
my_bytes[0x1E] = x1;
my_bytes[0x1D] = x2;
my_bytes[0x1C] = 1;
if( nzbits <= 0x18 )
{
(*this) = (*this) >> (0x18 - nzbits);
}
else
(*this) = (*this) << (nzbits - 0x18);
}
double sha256::inverse_approx_log_32_double( uint32_t x )
{
uint8_t nzbits = uint8_t( x >> 0x18 );
if( nzbits == 0 )
return 0.0;
uint32_t b = 1 << 0x18;
uint32_t y = (x & (b-1)) | b;
return std::ldexp( y, int( nzbits ) - 0x18 );
}
uint16_t sha256::clz()const
{
const uint8_t* my_bytes = (uint8_t*) data();
size_t size = data_size();
size_t lzbits = 0;
static const uint8_t char2lzbits[] = {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
size_t i = 0;
while( true )
{
uint8_t c = my_bytes[i];
lzbits += char2lzbits[c];
if( c != 0 )
break;
++i;
if( i >= size )
return 0x100;
}
return lzbits;
}
void to_variant( const sha256& bi, variant& v, uint32_t max_depth )
{
to_variant( std::vector<char>( (const char*)&bi, ((const char*)&bi) + sizeof(bi) ), v, max_depth );
}
void from_variant( const variant& v, sha256& bi, uint32_t max_depth )
{
std::vector<char> ve = v.as< std::vector<char> >( max_depth );
memset( &bi, char(0), sizeof(bi) );
if( ve.size() )
memcpy( &bi, ve.data(), fc::min<size_t>(ve.size(),sizeof(bi)) );
}
uint64_t hash64(const char* buf, size_t len)
{
sha256 sha_value = sha256::hash(buf,len);
return sha_value._hash[0];
}
template<>
unsigned int hmac<sha256>::internal_block_size() const { return 64; }
} //end namespace fc