peerplays-fc/include/fc/thread/task.hpp
2019-09-18 15:12:27 +02:00

171 lines
6.1 KiB
C++

#pragma once
#include <fc/thread/future.hpp>
#include <fc/thread/priority.hpp>
#include <fc/fwd.hpp>
#include <type_traits>
#include <boost/atomic.hpp>
namespace fc {
struct context;
class spin_lock;
namespace detail
{
struct specific_data_info
{
void* value;
void (*cleanup)(void*);
specific_data_info() :
value(0),
cleanup(0)
{}
specific_data_info(void* value, void (*cleanup)(void*)) :
value(value),
cleanup(cleanup)
{}
};
void* get_task_specific_data(unsigned slot);
void set_task_specific_data(unsigned slot, void* new_value, void(*cleanup)(void*));
class idle_guard;
}
class task_base : virtual public promise_base {
public:
void run();
virtual void cancel(const char* reason FC_CANCELATION_REASON_DEFAULT_ARG) override;
virtual ~task_base();
/* HERE BE DRAGONS
*
* Tasks are handled by an fc::thread . To avoid concurrency issues, fc::thread keeps a reference to the
* task in the form of a simple pointer.
* At the same time, a task is also a promise that will be fulfilled with the task result, so typically the
* creator of the task also keeps a reference to the task (but not necessarily always).
*
* Because effectively neither fc::thread nor the task creator are responsible for releasing resources
* associated with a task, and neither can delete the task without knowing if the other still needs it,
* the task object is managed by a shared_ptr.
* However, fc::thread doesn't hold a shared_ptr but a native pointer. To work around this, the task can
* be made to contain a shared_ptr holding itself (by calling retain()), which happens before the task
* is handed to an fc::thread, e. g. in fc::async(). Once the thread has processed the task, it calls
* release() which deletes the self-referencing shared_ptr and deletes the task object if it's no longer
* in use anywhere.
*/
void retain();
void release();
protected:
/// Task priority looks like unsupported feature.
uint64_t _posted_num;
priority _prio;
time_point _when;
void _set_active_context(context*);
context* _active_context;
task_base* _next;
// support for task-specific data
std::vector<detail::specific_data_info> *_task_specific_data;
friend void* detail::get_task_specific_data(unsigned slot);
friend void detail::set_task_specific_data(unsigned slot, void* new_value, void(*cleanup)(void*));
task_base(void* func);
// opaque internal / private data used by
// thread/thread_private
friend class thread;
friend class thread_d;
friend class detail::idle_guard;
fwd<spin_lock,8> _spinlock;
// avoid rtti info for every possible functor...
void* _promise_impl;
void* _functor;
void (*_destroy_functor)(void*);
void (*_run_functor)(void*, void* );
void run_impl();
void cleanup_task_specific_data();
private:
std::shared_ptr<promise_base> _self;
boost::atomic<int32_t> _retain_count;
};
namespace detail {
template<typename T>
struct functor_destructor {
static void destroy( void* v ) { ((T*)v)->~T(); }
};
template<typename T>
struct functor_run {
static void run( void* functor, void* prom ) {
((promise<decltype((*((T*)functor))())>*)prom)->set_value( (*((T*)functor))() );
}
};
template<typename T>
struct void_functor_run {
static void run( void* functor, void* prom ) {
(*((T*)functor))();
((promise<void>*)prom)->set_value();
}
};
}
template<typename R,uint64_t FunctorSize=64>
class task : virtual public task_base, virtual public promise<R> {
public:
typedef std::shared_ptr<task<R,FunctorSize>> ptr;
virtual ~task(){}
template<typename Functor>
static ptr create( Functor&& f, const char* desc )
{
return ptr( new task<R,FunctorSize>( std::move(f), desc ) );
}
virtual void cancel(const char* reason FC_CANCELATION_REASON_DEFAULT_ARG) override { task_base::cancel(reason); }
private:
template<typename Functor>
task( Functor&& f, const char* desc ):promise_base(desc), task_base(&_functor), promise<R>(desc) {
typedef typename std::remove_const_t< std::remove_reference_t<Functor> > FunctorType;
static_assert( sizeof(f) <= sizeof(_functor), "sizeof(Functor) is larger than FunctorSize" );
new ((char*)&_functor) FunctorType( std::forward<Functor>(f) );
_destroy_functor = &detail::functor_destructor<FunctorType>::destroy;
_promise_impl = static_cast<promise<R>*>(this);
_run_functor = &detail::functor_run<FunctorType>::run;
}
alignas(double) char _functor[FunctorSize];
};
template<uint64_t FunctorSize>
class task<void,FunctorSize> : public task_base, public promise<void> {
public:
typedef std::shared_ptr<task<void,FunctorSize>> ptr;
virtual ~task(){}
template<typename Functor>
static ptr create( Functor&& f, const char* desc )
{
return ptr( new task<void,FunctorSize>( std::move(f), desc ) );
}
virtual void cancel(const char* reason FC_CANCELATION_REASON_DEFAULT_ARG) override { task_base::cancel(reason); }
private:
template<typename Functor>
task( Functor&& f, const char* desc ):promise_base(desc), task_base(&_functor), promise<void>(desc) {
typedef typename std::remove_const_t< std::remove_reference_t<Functor> > FunctorType;
static_assert( sizeof(f) <= sizeof(_functor), "sizeof(Functor) is larger than FunctorSize" );
new ((char*)&_functor) FunctorType( std::forward<Functor>(f) );
_destroy_functor = &detail::functor_destructor<FunctorType>::destroy;
_promise_impl = static_cast<promise<void>*>(this);
_run_functor = &detail::void_functor_run<FunctorType>::run;
}
alignas(double) char _functor[FunctorSize];
};
}