peerplays_migrated/libraries/net/peer_connection.cpp

513 lines
21 KiB
C++
Raw Normal View History

2015-06-08 15:50:35 +00:00
/*
* Copyright (c) 2015, Cryptonomex, Inc.
* All rights reserved.
*
* This source code is provided for evaluation in private test networks only, until September 8, 2015. After this date, this license expires and
* the code may not be used, modified or distributed for any purpose. Redistribution and use in source and binary forms, with or without modification,
* are permitted until September 8, 2015, provided that the following conditions are met:
*
* 1. The code and/or derivative works are used only for private test networks consisting of no more than 10 P2P nodes.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <graphene/net/peer_connection.hpp>
#include <graphene/net/exceptions.hpp>
#include <graphene/net/config.hpp>
#include <graphene/chain/config.hpp>
#include <graphene/chain/protocol/fee_schedule.hpp>
2015-06-08 15:50:35 +00:00
#include <fc/thread/thread.hpp>
#ifdef DEFAULT_LOGGER
# undef DEFAULT_LOGGER
#endif
#define DEFAULT_LOGGER "p2p"
#ifndef NDEBUG
# define VERIFY_CORRECT_THREAD() assert(_thread->is_current())
#else
# define VERIFY_CORRECT_THREAD() do {} while (0)
#endif
namespace graphene { namespace net
{
message peer_connection::real_queued_message::get_message(peer_connection_delegate*)
{
if (message_send_time_field_offset != (size_t)-1)
{
// patch the current time into the message. Since this operates on the packed version of the structure,
// it won't work for anything after a variable-length field
std::vector<char> packed_current_time = fc::raw::pack(fc::time_point::now());
assert(message_send_time_field_offset + packed_current_time.size() <= message_to_send.data.size());
memcpy(message_to_send.data.data() + message_send_time_field_offset,
packed_current_time.data(), packed_current_time.size());
}
return message_to_send;
}
size_t peer_connection::real_queued_message::get_size_in_queue()
{
return message_to_send.data.size();
}
message peer_connection::virtual_queued_message::get_message(peer_connection_delegate* node)
{
return node->get_message_for_item(item_to_send);
}
size_t peer_connection::virtual_queued_message::get_size_in_queue()
{
return sizeof(item_id);
}
peer_connection::peer_connection(peer_connection_delegate* delegate) :
_node(delegate),
_message_connection(this),
_total_queued_messages_size(0),
direction(peer_connection_direction::unknown),
is_firewalled(firewalled_state::unknown),
our_state(our_connection_state::disconnected),
they_have_requested_close(false),
their_state(their_connection_state::disconnected),
we_have_requested_close(false),
negotiation_status(connection_negotiation_status::disconnected),
number_of_unfetched_item_ids(0),
peer_needs_sync_items_from_us(true),
we_need_sync_items_from_peer(true),
last_block_number_delegate_has_seen(0),
inhibit_fetching_sync_blocks(false),
transaction_fetching_inhibited_until(fc::time_point::min()),
last_known_fork_block_number(0),
firewall_check_state(nullptr)
#ifndef NDEBUG
,_thread(&fc::thread::current()),
_send_message_queue_tasks_running(0)
#endif
{
}
peer_connection_ptr peer_connection::make_shared(peer_connection_delegate* delegate)
{
// The lifetime of peer_connection objects is managed by shared_ptrs in node. The peer_connection
// is responsible for notifying the node when it should be deleted, and the process of deleting it
// cleans up the peer connection's asynchronous tasks which are responsible for notifying the node
// when it should be deleted.
// To ease this vicious cycle, we slightly delay the execution of the destructor until the
// current task yields. In the (not uncommon) case where it is the task executing
// connect_to or read_loop, this allows the task to finish before the destructor is forced
// to cancel it.
return peer_connection_ptr(new peer_connection(delegate));
//, [](peer_connection* peer_to_delete){ fc::async([peer_to_delete](){delete peer_to_delete;}); });
}
void peer_connection::destroy()
{
VERIFY_CORRECT_THREAD();
#if 0 // this gets too verbose
#ifndef NDEBUG
struct scope_logger {
fc::optional<fc::ip::endpoint> endpoint;
scope_logger(const fc::optional<fc::ip::endpoint>& endpoint) : endpoint(endpoint) { dlog("entering peer_connection::destroy() for peer ${endpoint}", ("endpoint", endpoint)); }
~scope_logger() { dlog("leaving peer_connection::destroy() for peer ${endpoint}", ("endpoint", endpoint)); }
} send_message_scope_logger(get_remote_endpoint());
#endif
#endif
try
{
dlog("calling close_connection()");
close_connection();
dlog("close_connection completed normally");
}
catch ( const fc::canceled_exception& )
{
assert(false && "the task that deletes peers should not be canceled because it will prevent us from cleaning up correctly");
}
catch ( ... )
{
dlog("close_connection threw");
}
try
{
dlog("canceling _send_queued_messages task");
_send_queued_messages_done.cancel_and_wait(__FUNCTION__);
dlog("cancel_and_wait completed normally");
}
catch( const fc::exception& e )
{
wlog("Unexpected exception from peer_connection's send_queued_messages_task : ${e}", ("e", e));
}
catch( ... )
{
wlog("Unexpected exception from peer_connection's send_queued_messages_task");
}
try
{
dlog("canceling accept_or_connect_task");
accept_or_connect_task_done.cancel_and_wait(__FUNCTION__);
dlog("accept_or_connect_task completed normally");
}
catch( const fc::exception& e )
{
wlog("Unexpected exception from peer_connection's accept_or_connect_task : ${e}", ("e", e));
}
catch( ... )
{
wlog("Unexpected exception from peer_connection's accept_or_connect_task");
}
_message_connection.destroy_connection(); // shut down the read loop
}
peer_connection::~peer_connection()
{
VERIFY_CORRECT_THREAD();
destroy();
}
fc::tcp_socket& peer_connection::get_socket()
{
VERIFY_CORRECT_THREAD();
return _message_connection.get_socket();
}
void peer_connection::accept_connection()
{
VERIFY_CORRECT_THREAD();
struct scope_logger {
scope_logger() { dlog("entering peer_connection::accept_connection()"); }
~scope_logger() { dlog("leaving peer_connection::accept_connection()"); }
} accept_connection_scope_logger;
try
{
assert( our_state == our_connection_state::disconnected &&
their_state == their_connection_state::disconnected );
direction = peer_connection_direction::inbound;
negotiation_status = connection_negotiation_status::accepting;
_message_connection.accept(); // perform key exchange
negotiation_status = connection_negotiation_status::accepted;
_remote_endpoint = _message_connection.get_socket().remote_endpoint();
// firewall-detecting info is pretty useless for inbound connections, but initialize
// it the best we can
fc::ip::endpoint local_endpoint = _message_connection.get_socket().local_endpoint();
inbound_address = local_endpoint.get_address();
inbound_port = local_endpoint.port();
outbound_port = inbound_port;
their_state = their_connection_state::just_connected;
our_state = our_connection_state::just_connected;
ilog( "established inbound connection from ${remote_endpoint}, sending hello", ("remote_endpoint", _message_connection.get_socket().remote_endpoint() ) );
}
catch ( const fc::exception& e )
{
wlog( "error accepting connection ${e}", ("e", e.to_detail_string() ) );
throw;
}
}
void peer_connection::connect_to( const fc::ip::endpoint& remote_endpoint, fc::optional<fc::ip::endpoint> local_endpoint )
{
VERIFY_CORRECT_THREAD();
try
{
assert( our_state == our_connection_state::disconnected &&
their_state == their_connection_state::disconnected );
direction = peer_connection_direction::outbound;
_remote_endpoint = remote_endpoint;
if( local_endpoint )
{
// the caller wants us to bind the local side of this socket to a specific ip/port
// This depends on the ip/port being unused, and on being able to set the
// SO_REUSEADDR/SO_REUSEPORT flags, and either of these might fail, so we need to
// detect if this fails.
try
{
_message_connection.bind( *local_endpoint );
}
catch ( const fc::canceled_exception& )
{
throw;
}
catch ( const fc::exception& except )
{
wlog( "Failed to bind to desired local endpoint ${endpoint}, will connect using an OS-selected endpoint: ${except}", ("endpoint", *local_endpoint )("except", except ) );
}
}
negotiation_status = connection_negotiation_status::connecting;
_message_connection.connect_to( remote_endpoint );
negotiation_status = connection_negotiation_status::connected;
their_state = their_connection_state::just_connected;
our_state = our_connection_state::just_connected;
ilog( "established outbound connection to ${remote_endpoint}", ("remote_endpoint", remote_endpoint ) );
}
catch ( fc::exception& e )
{
elog( "fatal: error connecting to peer ${remote_endpoint}: ${e}", ("remote_endpoint", remote_endpoint )("e", e.to_detail_string() ) );
throw;
}
} // connect_to()
void peer_connection::on_message( message_oriented_connection* originating_connection, const message& received_message )
{
VERIFY_CORRECT_THREAD();
_node->on_message( this, received_message );
}
void peer_connection::on_connection_closed( message_oriented_connection* originating_connection )
{
VERIFY_CORRECT_THREAD();
negotiation_status = connection_negotiation_status::closed;
_node->on_connection_closed( this );
}
void peer_connection::send_queued_messages_task()
{
VERIFY_CORRECT_THREAD();
#ifndef NDEBUG
struct counter {
unsigned& _send_message_queue_tasks_counter;
counter(unsigned& var) : _send_message_queue_tasks_counter(var) { dlog("entering peer_connection::send_queued_messages_task()"); assert(_send_message_queue_tasks_counter == 0); ++_send_message_queue_tasks_counter; }
~counter() { assert(_send_message_queue_tasks_counter == 1); --_send_message_queue_tasks_counter; dlog("leaving peer_connection::send_queued_messages_task()"); }
} concurrent_invocation_counter(_send_message_queue_tasks_running);
#endif
while (!_queued_messages.empty())
{
_queued_messages.front()->transmission_start_time = fc::time_point::now();
message message_to_send = _queued_messages.front()->get_message(_node);
try
{
dlog("peer_connection::send_queued_messages_task() calling message_oriented_connection::send_message() "
"to send message of type ${type} for peer ${endpoint}",
("type", message_to_send.msg_type)("endpoint", get_remote_endpoint()));
_message_connection.send_message(message_to_send);
dlog("peer_connection::send_queued_messages_task()'s call to message_oriented_connection::send_message() completed normally for peer ${endpoint}",
("endpoint", get_remote_endpoint()));
}
catch (const fc::canceled_exception&)
{
dlog("message_oriented_connection::send_message() was canceled, rethrowing canceled_exception");
throw;
}
catch (const fc::exception& send_error)
{
elog("Error sending message: ${exception}. Closing connection.", ("exception", send_error));
try
{
close_connection();
}
catch (const fc::exception& close_error)
{
elog("Caught error while closing connection: ${exception}", ("exception", close_error));
}
return;
}
catch (const std::exception& e)
{
elog("message_oriented_exception::send_message() threw a std::exception(): ${what}", ("what", e.what()));
}
catch (...)
{
elog("message_oriented_exception::send_message() threw an unhandled exception");
}
_queued_messages.front()->transmission_finish_time = fc::time_point::now();
_total_queued_messages_size -= _queued_messages.front()->get_size_in_queue();
_queued_messages.pop();
}
dlog("leaving peer_connection::send_queued_messages_task() due to queue exhaustion");
}
void peer_connection::send_queueable_message(std::unique_ptr<queued_message>&& message_to_send)
{
VERIFY_CORRECT_THREAD();
_total_queued_messages_size += message_to_send->get_size_in_queue();
_queued_messages.emplace(std::move(message_to_send));
if (_total_queued_messages_size > GRAPHENE_NET_MAXIMUM_QUEUED_MESSAGES_IN_BYTES)
{
elog("send queue exceeded maximum size of ${max} bytes (current size ${current} bytes)",
("max", GRAPHENE_NET_MAXIMUM_QUEUED_MESSAGES_IN_BYTES)("current", _total_queued_messages_size));
try
{
close_connection();
}
catch (const fc::exception& e)
{
elog("Caught error while closing connection: ${exception}", ("exception", e));
}
return;
}
if( _send_queued_messages_done.valid() && _send_queued_messages_done.canceled() )
FC_THROW_EXCEPTION(fc::exception, "Attempting to send a message on a connection that is being shut down");
if (!_send_queued_messages_done.valid() || _send_queued_messages_done.ready())
{
dlog("peer_connection::send_message() is firing up send_queued_message_task");
_send_queued_messages_done = fc::async([this](){ send_queued_messages_task(); }, "send_queued_messages_task");
}
else
dlog("peer_connection::send_message() doesn't need to fire up send_queued_message_task, it's already running");
}
void peer_connection::send_message(const message& message_to_send, size_t message_send_time_field_offset)
{
VERIFY_CORRECT_THREAD();
dlog("peer_connection::send_message() enqueueing message of type ${type} for peer ${endpoint}",
("type", message_to_send.msg_type)("endpoint", get_remote_endpoint()));
std::unique_ptr<queued_message> message_to_enqueue(new real_queued_message(message_to_send, message_send_time_field_offset));
send_queueable_message(std::move(message_to_enqueue));
}
void peer_connection::send_item(const item_id& item_to_send)
{
VERIFY_CORRECT_THREAD();
dlog("peer_connection::send_item() enqueueing message of type ${type} for peer ${endpoint}",
("type", item_to_send.item_type)("endpoint", get_remote_endpoint()));
std::unique_ptr<queued_message> message_to_enqueue(new virtual_queued_message(item_to_send));
send_queueable_message(std::move(message_to_enqueue));
}
void peer_connection::close_connection()
{
VERIFY_CORRECT_THREAD();
negotiation_status = connection_negotiation_status::closing;
if (connection_terminated_time != fc::time_point::min())
connection_terminated_time = fc::time_point::now();
_message_connection.close_connection();
}
void peer_connection::destroy_connection()
{
VERIFY_CORRECT_THREAD();
negotiation_status = connection_negotiation_status::closing;
destroy();
}
uint64_t peer_connection::get_total_bytes_sent() const
{
VERIFY_CORRECT_THREAD();
return _message_connection.get_total_bytes_sent();
}
uint64_t peer_connection::get_total_bytes_received() const
{
VERIFY_CORRECT_THREAD();
return _message_connection.get_total_bytes_received();
}
fc::time_point peer_connection::get_last_message_sent_time() const
{
VERIFY_CORRECT_THREAD();
return _message_connection.get_last_message_sent_time();
}
fc::time_point peer_connection::get_last_message_received_time() const
{
VERIFY_CORRECT_THREAD();
return _message_connection.get_last_message_received_time();
}
fc::optional<fc::ip::endpoint> peer_connection::get_remote_endpoint()
{
VERIFY_CORRECT_THREAD();
return _remote_endpoint;
}
fc::ip::endpoint peer_connection::get_local_endpoint()
{
VERIFY_CORRECT_THREAD();
return _message_connection.get_socket().local_endpoint();
}
void peer_connection::set_remote_endpoint( fc::optional<fc::ip::endpoint> new_remote_endpoint )
{
VERIFY_CORRECT_THREAD();
_remote_endpoint = new_remote_endpoint;
}
bool peer_connection::busy()
{
VERIFY_CORRECT_THREAD();
return !items_requested_from_peer.empty() || !sync_items_requested_from_peer.empty() || item_ids_requested_from_peer;
}
bool peer_connection::idle()
{
VERIFY_CORRECT_THREAD();
return !busy();
}
bool peer_connection::is_transaction_fetching_inhibited() const
{
VERIFY_CORRECT_THREAD();
return transaction_fetching_inhibited_until > fc::time_point::now();
}
fc::sha512 peer_connection::get_shared_secret() const
{
VERIFY_CORRECT_THREAD();
return _message_connection.get_shared_secret();
}
void peer_connection::clear_old_inventory()
{
VERIFY_CORRECT_THREAD();
fc::time_point_sec oldest_inventory_to_keep(fc::time_point::now() - fc::minutes(GRAPHENE_NET_MAX_INVENTORY_SIZE_IN_MINUTES));
// expire old items from inventory_advertised_to_peer
auto oldest_inventory_to_keep_iter = inventory_advertised_to_peer.get<timestamp_index>().lower_bound(oldest_inventory_to_keep);
auto begin_iter = inventory_advertised_to_peer.get<timestamp_index>().begin();
unsigned number_of_elements_advertised_to_peer_to_discard = std::distance(begin_iter, oldest_inventory_to_keep_iter);
inventory_advertised_to_peer.get<timestamp_index>().erase(begin_iter, oldest_inventory_to_keep_iter);
// also expire items from inventory_peer_advertised_to_us
oldest_inventory_to_keep_iter = inventory_peer_advertised_to_us.get<timestamp_index>().lower_bound(oldest_inventory_to_keep);
begin_iter = inventory_peer_advertised_to_us.get<timestamp_index>().begin();
unsigned number_of_elements_peer_advertised_to_discard = std::distance(begin_iter, oldest_inventory_to_keep_iter);
inventory_peer_advertised_to_us.get<timestamp_index>().erase(begin_iter, oldest_inventory_to_keep_iter);
dlog("Expiring old inventory for peer ${peer}: removing ${to_peer} items advertised to peer (${remain_to_peer} left), and ${to_us} advertised to us (${remain_to_us} left)",
("peer", get_remote_endpoint())
("to_peer", number_of_elements_advertised_to_peer_to_discard)("remain_to_peer", inventory_advertised_to_peer.size())
("to_us", number_of_elements_peer_advertised_to_discard)("remain_to_us", inventory_peer_advertised_to_us.size()));
}
// we have a higher limit for blocks than transactions so we will still fetch blocks even when transactions are throttled
bool peer_connection::is_inventory_advertised_to_us_list_full_for_transactions() const
{
VERIFY_CORRECT_THREAD();
return inventory_peer_advertised_to_us.size() > GRAPHENE_NET_MAX_INVENTORY_SIZE_IN_MINUTES * GRAPHENE_NET_MAX_TRX_PER_SECOND * 60;
}
bool peer_connection::is_inventory_advertised_to_us_list_full() const
{
VERIFY_CORRECT_THREAD();
// allow the total inventory size to be the maximum number of transactions we'll store in the inventory (above)
// plus the maximum number of blocks that would be generated in GRAPHENE_NET_MAX_INVENTORY_SIZE_IN_MINUTES (plus one,
// to give us some wiggle room)
return inventory_peer_advertised_to_us.size() >
GRAPHENE_NET_MAX_INVENTORY_SIZE_IN_MINUTES * GRAPHENE_NET_MAX_TRX_PER_SECOND * 60 +
(GRAPHENE_NET_MAX_INVENTORY_SIZE_IN_MINUTES + 1) * 60 / GRAPHENE_MAX_BLOCK_INTERVAL;
}
bool peer_connection::performing_firewall_check() const
{
return firewall_check_state && firewall_check_state->requesting_peer != node_id_t();
}
fc::optional<fc::ip::endpoint> peer_connection::get_endpoint_for_connecting() const
{
if (inbound_port)
return fc::ip::endpoint(inbound_address, inbound_port);
return fc::optional<fc::ip::endpoint>();
}
} } // end namespace graphene::net