peerplays_migrated/libraries/chain/db_block.cpp
2023-06-09 08:10:26 +00:00

970 lines
38 KiB
C++

/*
* Copyright (c) 2015 Cryptonomex, Inc., and contributors.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <graphene/chain/database.hpp>
#include <graphene/chain/db_with.hpp>
#include <graphene/chain/hardfork.hpp>
#include <graphene/chain/protocol/operations.hpp>
#include <graphene/chain/protocol/betting_market.hpp>
#include <graphene/chain/block_summary_object.hpp>
#include <graphene/chain/global_property_object.hpp>
#include <graphene/chain/operation_history_object.hpp>
#include <graphene/chain/proposal_object.hpp>
#include <graphene/chain/transaction_object.hpp>
#include <graphene/chain/witness_object.hpp>
#include <graphene/chain/protocol/fee_schedule.hpp>
#include <graphene/chain/exceptions.hpp>
#include <graphene/chain/evaluator.hpp>
#include <graphene/chain/witness_schedule_object.hpp>
#include <graphene/db/object_database.hpp>
#include <fc/crypto/digest.hpp>
#include <boost/filesystem.hpp>
namespace {
struct proposed_operations_digest_accumulator
{
typedef void result_type;
void operator()(const graphene::chain::proposal_create_operation& proposal)
{
for (auto& operation: proposal.proposed_ops)
{
proposed_operations_digests.push_back(fc::digest(operation.op));
}
}
//empty template method is needed for all other operation types
//we can ignore them, we are interested in only proposal_create_operation
template<class T>
void operator()(const T&)
{}
std::vector<fc::sha256> proposed_operations_digests;
};
std::vector<fc::sha256> gather_proposed_operations_digests(const graphene::chain::transaction& trx)
{
proposed_operations_digest_accumulator digest_accumulator;
for (auto& operation: trx.operations)
{
if( operation.which() != graphene::chain::operation::tag<graphene::chain::betting_market_group_create_operation>::value
&& operation.which() != graphene::chain::operation::tag<graphene::chain::betting_market_create_operation>::value )
operation.visit(digest_accumulator);
else
edump( ("Found dup"));
}
return digest_accumulator.proposed_operations_digests;
}
}
namespace graphene { namespace chain {
bool database::is_known_block( const block_id_type& id )const
{
return _fork_db.is_known_block(id) || _block_id_to_block.contains(id);
}
/**
* Only return true *if* the transaction has not expired or been invalidated. If this
* method is called with a VERY old transaction we will return false, they should
* query things by blocks if they are that old.
*/
bool database::is_known_transaction( const transaction_id_type& id )const
{
const auto& trx_idx = get_index_type<transaction_index>().indices().get<by_trx_id>();
return trx_idx.find( id ) != trx_idx.end();
}
block_id_type database::get_block_id_for_num( uint32_t block_num )const
{ try {
return _block_id_to_block.fetch_block_id( block_num );
} FC_CAPTURE_AND_RETHROW( (block_num) ) }
optional<signed_block> database::fetch_block_by_id( const block_id_type& id )const
{
auto b = _fork_db.fetch_block( id );
if( !b )
return _block_id_to_block.fetch_optional(id);
return b->data;
}
optional<signed_block> database::fetch_block_by_number( uint32_t num )const
{
auto results = _fork_db.fetch_block_by_number(num);
if( results.size() == 1 )
return results[0]->data;
else
return _block_id_to_block.fetch_by_number(num);
return optional<signed_block>();
}
const signed_transaction& database::get_recent_transaction(const transaction_id_type& trx_id) const
{
auto& index = get_index_type<transaction_index>().indices().get<by_trx_id>();
auto itr = index.find(trx_id);
FC_ASSERT(itr != index.end());
return itr->trx;
}
std::vector<block_id_type> database::get_block_ids_on_fork(block_id_type head_of_fork) const
{
pair<fork_database::branch_type, fork_database::branch_type> branches = _fork_db.fetch_branch_from(head_block_id(), head_of_fork);
if( !((branches.first.back()->previous_id() == branches.second.back()->previous_id())) )
{
edump( (head_of_fork)
(head_block_id())
(branches.first.size())
(branches.second.size()) );
assert(branches.first.back()->previous_id() == branches.second.back()->previous_id());
}
std::vector<block_id_type> result;
for (const item_ptr& fork_block : branches.second)
result.emplace_back(fork_block->id);
result.emplace_back(branches.first.back()->previous_id());
return result;
}
void database::check_transaction_for_duplicated_operations(const signed_transaction& trx)
{
const auto& proposal_index = get_index<proposal_object>();
std::set<fc::sha256> existed_operations_digests;
proposal_index.inspect_all_objects( [&](const object& obj){
const proposal_object& proposal = static_cast<const proposal_object&>(obj);
auto proposed_operations_digests = gather_proposed_operations_digests( proposal.proposed_transaction );
existed_operations_digests.insert( proposed_operations_digests.begin(), proposed_operations_digests.end() );
});
{
const std::lock_guard<std::mutex> pending_tx_lock{_pending_tx_mutex};
for (auto &pending_transaction : _pending_tx)
{
auto proposed_operations_digests = gather_proposed_operations_digests(pending_transaction);
existed_operations_digests.insert(proposed_operations_digests.begin(), proposed_operations_digests.end());
}
}
auto proposed_operations_digests = gather_proposed_operations_digests(trx);
for (auto& digest: proposed_operations_digests)
{
FC_ASSERT(existed_operations_digests.count(digest) == 0, "Proposed operation is already pending for approval.");
}
}
/**
* Push block "may fail" in which case every partial change is unwound. After
* push block is successful the block is appended to the chain database on disk.
*
* @return true if we switched forks as a result of this push.
*/
bool database::push_block(const signed_block& new_block, uint32_t skip)
{
// idump((new_block.block_num())(new_block.id())(new_block.timestamp)(new_block.previous));
bool result;
detail::with_skip_flags( *this, skip, [&]()
{
std::vector<processed_transaction> pending_tx = [this] {
const std::lock_guard<std::mutex> pending_tx_lock{_pending_tx_mutex};
return std::move(_pending_tx);
}();
detail::without_pending_transactions( *this, std::move(pending_tx),
[&]()
{
result = _push_block(new_block);
});
});
return result;
}
bool database::_push_block(const signed_block& new_block)
{ try {
boost::filesystem::space_info si = boost::filesystem::space(get_data_dir());
FC_ASSERT((si.available) > 104857600, "Rejecting block due to low disk space"); // 104857600 bytes = 100 MB
uint32_t skip = get_node_properties().skip_flags;
const auto now = fc::time_point::now().sec_since_epoch();
if( _fork_db.head() && new_block.timestamp.sec_since_epoch() > now - 86400 )
{
// verify that the block signer is in the current set of active witnesses.
shared_ptr<fork_item> prev_block = _fork_db.fetch_block( new_block.previous );
GRAPHENE_ASSERT( prev_block, unlinkable_block_exception, "block does not link to known chain" );
if( prev_block->scheduled_witnesses && !(skip&(skip_witness_schedule_check|skip_witness_signature)) )
verify_signing_witness( new_block, *prev_block );
}
shared_ptr<fork_item> new_head = _fork_db.push_block(new_block);
//If the head block from the longest chain does not build off of the current head, we need to switch forks.
if( new_head->data.previous != head_block_id() )
{
//If the newly pushed block is the same height as head, we get head back in new_head
//Only switch forks if new_head is actually higher than head
if( new_head->data.block_num() > head_block_num() )
{
wlog( "Switching to fork: ${id}", ("id",new_head->data.id()) );
auto branches = _fork_db.fetch_branch_from(new_head->data.id(), head_block_id());
// pop blocks until we hit the forked block
while( head_block_id() != branches.second.back()->data.previous )
{
ilog( "popping block #${n} ${id}", ("n",head_block_num())("id",head_block_id()) );
pop_block();
}
// push all blocks on the new fork
for( auto ritr = branches.first.rbegin(); ritr != branches.first.rend(); ++ritr )
{
ilog( "pushing block from fork #${n} ${id}", ("n",(*ritr)->data.block_num())("id",(*ritr)->id) );
optional<fc::exception> except;
try {
undo_database::session session = _undo_db.start_undo_session();
apply_block( (*ritr)->data, skip );
update_witnesses( **ritr );
_block_id_to_block.store( (*ritr)->id, (*ritr)->data );
session.commit();
}
catch ( const fc::exception& e ) { except = e; }
if( except )
{
wlog( "exception thrown while switching forks ${e}", ("e",except->to_detail_string() ) );
// remove the rest of branches.first from the fork_db, those blocks are invalid
while( ritr != branches.first.rend() )
{
ilog( "removing block from fork_db #${n} ${id}", ("n",(*ritr)->data.block_num())("id",(*ritr)->id) );
_fork_db.remove( (*ritr)->id );
++ritr;
}
_fork_db.set_head( branches.second.front() );
// pop all blocks from the bad fork
while( head_block_id() != branches.second.back()->data.previous )
{
ilog( "popping block #${n} ${id}", ("n",head_block_num())("id",head_block_id()) );
pop_block();
}
ilog( "Switching back to fork: ${id}", ("id",branches.second.front()->data.id()) );
// restore all blocks from the good fork
for( auto ritr2 = branches.second.rbegin(); ritr2 != branches.second.rend(); ++ritr2 )
{
ilog( "pushing block #${n} ${id}", ("n",(*ritr2)->data.block_num())("id",(*ritr2)->id) );
auto session = _undo_db.start_undo_session();
apply_block( (*ritr2)->data, skip );
_block_id_to_block.store( (*ritr2)->id, (*ritr2)->data );
session.commit();
}
throw *except;
}
}
return true;
}
else return false;
}
try {
auto session = _undo_db.start_undo_session();
apply_block(new_block, skip);
if( new_block.timestamp.sec_since_epoch() > now - 86400 )
update_witnesses( *new_head );
_block_id_to_block.store(new_block.id(), new_block);
session.commit();
} catch ( const fc::exception& e ) {
elog("Failed to push new block:\n${e}", ("e", e.to_detail_string()));
_fork_db.remove(new_block.id());
throw;
}
return false;
} FC_CAPTURE_AND_RETHROW( (new_block) ) }
void database::verify_signing_witness( const signed_block& new_block, const fork_item& fork_entry )const
{
FC_ASSERT( new_block.timestamp >= fork_entry.next_block_time );
uint32_t slot_num = ( new_block.timestamp - fork_entry.next_block_time ).to_seconds() / block_interval();
const global_property_object& gpo = get_global_properties();
if (gpo.parameters.witness_schedule_algorithm == GRAPHENE_WITNESS_SHUFFLED_ALGORITHM)
{
uint64_t index = ( fork_entry.next_block_aslot + slot_num ) % fork_entry.scheduled_witnesses->size();
const auto& scheduled_witness = (*fork_entry.scheduled_witnesses)[index];
FC_ASSERT( new_block.witness == scheduled_witness.first, "Witness produced block at wrong time",
("block witness",new_block.witness)("scheduled",scheduled_witness)("slot_num",slot_num) );
FC_ASSERT( new_block.validate_signee( scheduled_witness.second ) );
}
if (gpo.parameters.witness_schedule_algorithm == GRAPHENE_WITNESS_SCHEDULED_ALGORITHM &&
slot_num != 0 )
{
witness_id_type wid;
const witness_schedule_object& wso = get_witness_schedule_object();
// ask the near scheduler who goes in the given slot
bool slot_is_near = wso.scheduler.get_slot(slot_num, wid);
if(! slot_is_near)
{
// if the near scheduler doesn't know, we have to extend it to
// a far scheduler.
// n.b. instantiating it is slow, but block gaps long enough to
// need it are likely pretty rare.
witness_scheduler_rng far_rng(wso.rng_seed.begin(), GRAPHENE_FAR_SCHEDULE_CTR_IV);
far_future_witness_scheduler far_scheduler =
far_future_witness_scheduler(wso.scheduler, far_rng);
if(!far_scheduler.get_slot(slot_num, wid))
{
// no scheduled witness -- somebody set up us the bomb
// n.b. this code path is impossible, the present
// implementation of far_future_witness_scheduler
// returns true unconditionally
assert( false );
}
}
FC_ASSERT( new_block.witness == wid, "Witness produced block at wrong time",
("block witness",new_block.witness)("scheduled",wid)("slot_num",slot_num) );
FC_ASSERT( new_block.validate_signee( wid(*this).signing_key ) );
}
}
void database::update_witnesses( fork_item& fork_entry )const
{
if( fork_entry.scheduled_witnesses ) return;
const dynamic_global_property_object& dpo = get_dynamic_global_properties();
fork_entry.next_block_aslot = dpo.current_aslot + 1;
fork_entry.next_block_time = get_slot_time( 1 );
const witness_schedule_object& wso = get_witness_schedule_object();
fork_entry.scheduled_witnesses = std::make_shared< vector< pair< witness_id_type, public_key_type > > >();
fork_entry.scheduled_witnesses->reserve( wso.current_shuffled_witnesses.size() );
for( size_t i = 0; i < wso.current_shuffled_witnesses.size(); ++i )
{
const auto& witness = wso.current_shuffled_witnesses[i](*this);
fork_entry.scheduled_witnesses->emplace_back( wso.current_shuffled_witnesses[i], witness.signing_key );
}
}
/**
* Attempts to push the transaction into the pending queue
*
* When called to push a locally generated transaction, set the skip_block_size_check bit on the skip argument. This
* will allow the transaction to be pushed even if it causes the pending block size to exceed the maximum block size.
* Although the transaction will probably not propagate further now, as the peers are likely to have their pending
* queues full as well, it will be kept in the queue to be propagated later when a new block flushes out the pending
* queues.
*/
processed_transaction database::push_transaction( const signed_transaction& trx, uint32_t skip )
{ try {
processed_transaction result;
detail::with_skip_flags( *this, skip, [&]()
{
result = _push_transaction( trx );
} );
return result;
} FC_CAPTURE_AND_RETHROW( (trx) ) }
processed_transaction database::_push_transaction( const signed_transaction& trx )
{
// If this is the first transaction pushed after applying a block, start a new undo session.
// This allows us to quickly rewind to the clean state of the head block, in case a new block arrives.
{
const std::lock_guard<std::mutex> pending_tx_session_lock{_pending_tx_session_mutex};
if (!_pending_tx_session.valid()) {
const std::lock_guard<std::mutex> undo_db_lock{_undo_db_mutex};
_pending_tx_session = _undo_db.start_undo_session();
}
}
// Create a temporary undo session as a child of _pending_tx_session.
// The temporary session will be discarded by the destructor if
// _apply_transaction fails. If we make it to merge(), we
// apply the changes.
const std::lock_guard<std::mutex> undo_db_lock{_undo_db_mutex};
auto temp_session = _undo_db.start_undo_session();
auto processed_trx = _apply_transaction(trx);
{
const std::lock_guard<std::mutex> pending_tx_lock{_pending_tx_mutex};
_pending_tx.push_back(processed_trx);
}
// notify_changed_objects();
// The transaction applied successfully. Merge its changes into the pending block session.
temp_session.merge();
// notify anyone listening to pending transactions
notify_on_pending_transaction( trx );
return processed_trx;
}
processed_transaction database::validate_transaction( const signed_transaction& trx )
{
const std::lock_guard<std::mutex> undo_db_lock{_undo_db_mutex};
auto session = _undo_db.start_undo_session();
return _apply_transaction( trx );
}
processed_transaction database::push_proposal(const proposal_object& proposal)
{ try {
transaction_evaluation_state eval_state(this);
eval_state._is_proposed_trx = true;
eval_state.operation_results.reserve(proposal.proposed_transaction.operations.size());
processed_transaction ptrx(proposal.proposed_transaction);
eval_state._trx = &ptrx;
size_t old_applied_ops_size = _applied_ops.size();
try {
if( _undo_db.size() >= _undo_db.max_size() )
_undo_db.set_max_size( _undo_db.size() + 1 );
auto session = _undo_db.start_undo_session(true);
for( auto& op : proposal.proposed_transaction.operations )
eval_state.operation_results.emplace_back(apply_operation(eval_state, op));
remove_son_proposal(proposal);
remove(proposal);
session.merge();
} catch ( const fc::exception& e ) {
if( head_block_time() <= HARDFORK_483_TIME )
{
for( size_t i=old_applied_ops_size,n=_applied_ops.size(); i<n; i++ )
{
if(_applied_ops[i].valid()) {
ilog("removing failed operation from applied_ops: ${op}", ("op", *(_applied_ops[i])));
}
else{
ilog("Can't remove failed operation from applied_ops (operation is not valid), op_id : ${op_id}", ("op_id", i));
}
_applied_ops[i].reset();
}
}
else
{
_applied_ops.resize( old_applied_ops_size );
}
edump((e));
throw;
}
ptrx.operation_results = std::move(eval_state.operation_results);
return ptrx;
} FC_CAPTURE_AND_RETHROW() }
signed_block database::generate_block(
fc::time_point_sec when,
witness_id_type witness_id,
const fc::ecc::private_key& block_signing_private_key,
uint32_t skip /* = 0 */
)
{ try {
signed_block result;
detail::with_skip_flags( *this, skip, [&]()
{
result = _generate_block( when, witness_id, block_signing_private_key );
} );
return result;
} FC_CAPTURE_AND_RETHROW() }
signed_block database::_generate_block(
fc::time_point_sec when,
witness_id_type witness_id,
const fc::ecc::private_key& block_signing_private_key
)
{
try {
uint32_t skip = get_node_properties().skip_flags;
uint32_t slot_num = get_slot_at_time( when );
FC_ASSERT( slot_num > 0 );
witness_id_type scheduled_witness = get_scheduled_witness( slot_num );
FC_ASSERT( scheduled_witness == witness_id );
const auto& witness_obj = witness_id(*this);
if( !(skip & skip_witness_signature) )
FC_ASSERT( witness_obj.signing_key == block_signing_private_key.get_public_key() );
static const size_t max_block_header_size = fc::raw::pack_size( signed_block_header() ) + 4;
auto maximum_block_size = get_global_properties().parameters.maximum_block_size;
size_t total_block_size = max_block_header_size;
signed_block pending_block;
//
// The following code throws away existing pending_tx_session and
// rebuilds it by re-applying pending transactions.
//
// This rebuild is necessary because pending transactions' validity
// and semantics may have changed since they were received, because
// time-based semantics are evaluated based on the current block
// time. These changes can only be reflected in the database when
// the value of the "when" variable is known, which means we need to
// re-apply pending transactions in this method.
//
{
const std::lock_guard<std::mutex> pending_tx_session_lock{_pending_tx_session_mutex};
_pending_tx_session.reset();
_pending_tx_session = _undo_db.start_undo_session();
}
uint64_t postponed_tx_count = 0;
// pop pending state (reset to head block state)
{
const std::lock_guard<std::mutex> pending_tx_lock{_pending_tx_mutex};
for (const processed_transaction &tx : _pending_tx) {
size_t new_total_size = total_block_size + fc::raw::pack_size(tx);
// postpone transaction if it would make block too big
if (new_total_size >= maximum_block_size) {
postponed_tx_count++;
continue;
}
try {
auto temp_session = _undo_db.start_undo_session();
processed_transaction ptx = _apply_transaction(tx);
temp_session.merge();
// We have to recompute pack_size(ptx) because it may be different
// than pack_size(tx) (i.e. if one or more results increased
// their size)
total_block_size += fc::raw::pack_size(ptx);
pending_block.transactions.push_back(ptx);
} catch (const fc::exception &e) {
// Do nothing, transaction will not be re-applied
wlog("Transaction was not processed while generating block due to ${e}", ("e", e));
wlog("The transaction was ${t}", ("t", tx));
}
}
}
if( postponed_tx_count > 0 )
{
wlog( "Postponed ${n} transactions due to block size limit", ("n", postponed_tx_count) );
}
{
const std::lock_guard<std::mutex> pending_tx_session_lock{_pending_tx_session_mutex};
_pending_tx_session.reset();
}
// We have temporarily broken the invariant that
// _pending_tx_session is the result of applying _pending_tx, as
// _pending_tx now consists of the set of postponed transactions.
// However, the push_block() call below will re-create the
// _pending_tx_session.
pending_block.previous = head_block_id();
pending_block.timestamp = when;
pending_block.transaction_merkle_root = pending_block.calculate_merkle_root();
pending_block.witness = witness_id;
// Genesis witnesses start with a default initial secret
if( witness_obj.next_secret_hash == secret_hash_type::hash( secret_hash_type() ) ) {
pending_block.previous_secret = secret_hash_type();
} else {
secret_hash_type::encoder last_enc;
fc::raw::pack( last_enc, block_signing_private_key );
fc::raw::pack( last_enc, witness_obj.previous_secret );
pending_block.previous_secret = last_enc.result();
}
secret_hash_type::encoder next_enc;
fc::raw::pack( next_enc, block_signing_private_key );
fc::raw::pack( next_enc, pending_block.previous_secret );
pending_block.next_secret_hash = secret_hash_type::hash(next_enc.result());
if( !(skip & skip_witness_signature) )
pending_block.sign( block_signing_private_key );
// TODO: Move this to _push_block() so session is restored.
if( !(skip & skip_block_size_check) )
{
FC_ASSERT( fc::raw::pack_size(pending_block) <= get_global_properties().parameters.maximum_block_size );
}
push_block( pending_block, skip | skip_transaction_signatures ); // skip authority check when pushing self-generated blocks
return pending_block;
} FC_CAPTURE_AND_RETHROW( (witness_id) ) }
/**
* Removes the most recent block from the database and
* undoes any changes it made.
*/
void database::pop_block()
{ try {
{
const std::lock_guard<std::mutex> pending_tx_session_lock{_pending_tx_session_mutex};
_pending_tx_session.reset();
}
auto head_id = head_block_id();
optional<signed_block> head_block = fetch_block_by_id( head_id );
GRAPHENE_ASSERT( head_block.valid(), pop_empty_chain, "there are no blocks to pop" );
_fork_db.pop_block();
pop_undo();
_popped_tx.insert( _popped_tx.begin(), head_block->transactions.begin(), head_block->transactions.end() );
} FC_CAPTURE_AND_RETHROW() }
void database::clear_pending()
{ try {
const std::lock_guard<std::mutex> pending_tx_lock{_pending_tx_mutex};
const std::lock_guard<std::mutex> pending_tx_session_lock{_pending_tx_session_mutex};
assert( (_pending_tx.size() == 0) || _pending_tx_session.valid() );
_pending_tx.clear();
_pending_tx_session.reset();
} FC_CAPTURE_AND_RETHROW() }
uint32_t database::push_applied_operation( const operation& op )
{
_applied_ops.emplace_back(op);
operation_history_object& oh = *(_applied_ops.back());
oh.block_num = _current_block_num;
oh.trx_in_block = _current_trx_in_block;
oh.op_in_trx = _current_op_in_trx;
oh.virtual_op = _current_virtual_op++;
return _applied_ops.size() - 1;
}
void database::set_applied_operation_result( uint32_t op_id, const operation_result& result )
{
assert( op_id < _applied_ops.size() );
if( _applied_ops[op_id].valid() )
_applied_ops[op_id]->result = result;
else
{
elog( "Could not set operation result (head_block_num=${b})", ("b", head_block_num()) );
}
}
const vector<optional< operation_history_object > >& database::get_applied_operations() const
{
return _applied_ops;
}
vector<optional< operation_history_object > >& database::get_applied_operations()
{
return _applied_ops;
}
//////////////////// private methods ////////////////////
void database::apply_block( const signed_block& next_block, uint32_t skip )
{
auto block_num = next_block.block_num();
if( _checkpoints.size() && _checkpoints.rbegin()->second != block_id_type() )
{
auto itr = _checkpoints.find( block_num );
if( itr != _checkpoints.end() )
FC_ASSERT( next_block.id() == itr->second, "Block did not match checkpoint", ("checkpoint",*itr)("block_id",next_block.id()) );
if( _checkpoints.rbegin()->first >= block_num )
skip = ~0;// WE CAN SKIP ALMOST EVERYTHING
}
detail::with_skip_flags( *this, skip, [&]()
{
_apply_block( next_block );
} );
return;
}
void database::_apply_block( const signed_block& next_block )
{ try {
uint32_t next_block_num = next_block.block_num();
uint32_t skip = get_node_properties().skip_flags;
_applied_ops.clear();
FC_ASSERT( (skip & skip_merkle_check) || next_block.transaction_merkle_root == next_block.calculate_merkle_root(), "", ("next_block.transaction_merkle_root",next_block.transaction_merkle_root)("calc",next_block.calculate_merkle_root())("next_block",next_block)("id",next_block.id()) );
const witness_object& signing_witness = validate_block_header(skip, next_block);
const auto& global_props = get_global_properties();
const auto& dynamic_global_props = get_dynamic_global_properties();
bool maint_needed = (dynamic_global_props.next_maintenance_time <= next_block.timestamp);
_current_block_num = next_block_num;
_current_trx_in_block = 0;
_current_op_in_trx = 0;
_current_virtual_op = 0;
_issue_453_affected_assets.clear();
for( const auto& trx : next_block.transactions )
{
/* We do not need to push the undo state for each transaction
* because they either all apply and are valid or the
* entire block fails to apply. We only need an "undo" state
* for transactions when validating broadcast transactions or
* when building a block.
*/
apply_transaction( trx, skip );
// For real operations which are explicitly included in a transaction, virtual_op is 0.
// For VOPs derived directly from a real op,
// use the real op's (block_num,trx_in_block,op_in_trx), virtual_op starts from 1.
// For VOPs created after processed all transactions,
// trx_in_block = the_block.trsanctions.size(), virtual_op starts from 0.
++_current_trx_in_block;
_current_op_in_trx = 0;
_current_virtual_op = 0;
}
if (global_props.parameters.witness_schedule_algorithm == GRAPHENE_WITNESS_SCHEDULED_ALGORITHM) {
update_witness_schedule(next_block);
for(const auto& active_sons : global_props.active_sons) {
if(!active_sons.second.empty()) {
update_son_schedule(active_sons.first, next_block);
}
}
}
const uint32_t missed = update_witness_missed_blocks( next_block );
update_global_dynamic_data( next_block, missed );
update_signing_witness(signing_witness, next_block);
update_last_irreversible_block();
// Are we at the maintenance interval?
if( maint_needed )
perform_chain_maintenance(next_block, global_props);
check_ending_lotteries();
check_ending_nft_lotteries();
create_block_summary(next_block);
place_delayed_bets(); // must happen after update_global_dynamic_data() updates the time
clear_expired_transactions();
clear_expired_proposals();
clear_expired_orders();
update_expired_feeds(); // this will update expired feeds and some core exchange rates
update_core_exchange_rates(); // this will update remaining core exchange rates
update_withdraw_permissions();
update_tournaments();
update_betting_markets(next_block.timestamp);
finalize_expired_offers();
// n.b., update_maintenance_flag() happens this late
// because get_slot_time() / get_slot_at_time() is needed above
// TODO: figure out if we could collapse this function into
// update_global_dynamic_data() as perhaps these methods only need
// to be called for header validation?
update_maintenance_flag( maint_needed );
if (global_props.parameters.witness_schedule_algorithm == GRAPHENE_WITNESS_SHUFFLED_ALGORITHM) {
update_witness_schedule();
for(const auto& active_sidechain_type : active_sidechain_types(dynamic_global_props.time)) {
if(global_props.active_sons.at(active_sidechain_type).size() > 0) {
update_son_schedule(active_sidechain_type);
}
}
}
if( !_node_property_object.debug_updates.empty() )
apply_debug_updates();
// notify observers that the block has been applied
notify_applied_block( next_block ); //emit
_applied_ops.clear();
notify_changed_objects();
} FC_CAPTURE_AND_RETHROW( (next_block.block_num()) ) }
processed_transaction database::apply_transaction(const signed_transaction& trx, uint32_t skip)
{
processed_transaction result;
detail::with_skip_flags( *this, skip, [&]()
{
result = _apply_transaction(trx);
});
return result;
}
class undo_size_restorer {
public:
undo_size_restorer( undo_database& db ) : _db( db ), old_max( db.max_size() ) {
_db.set_max_size( old_max * 2 );
}
~undo_size_restorer() {
_db.set_max_size( old_max );
}
private:
undo_database& _db;
size_t old_max;
};
processed_transaction database::_apply_transaction(const signed_transaction& trx)
{ try {
uint32_t skip = get_node_properties().skip_flags;
if( true || !(skip&skip_validate) ) /* issue #505 explains why this skip_flag is disabled */
trx.validate();
auto& trx_idx = get_mutable_index_type<transaction_index>();
const chain_id_type& chain_id = get_chain_id();
transaction_id_type trx_id;
if( !(skip & skip_transaction_dupe_check) )
{
trx_id = trx.id();
FC_ASSERT( trx_idx.indices().get<by_trx_id>().find(trx_id) == trx_idx.indices().get<by_trx_id>().end() );
}
transaction_evaluation_state eval_state(this);
const chain_parameters& chain_parameters = get_global_properties().parameters;
eval_state._trx = &trx;
if( !(skip & (skip_transaction_signatures | skip_authority_check) ) )
{
auto get_active = [this]( account_id_type id ) { return &id(*this).active; };
auto get_owner = [this]( account_id_type id ) { return &id(*this).owner; };
auto get_custom = [this]( account_id_type id, const operation& op ) {
return get_account_custom_authorities(id, op);
};
trx.verify_authority( chain_id, get_active, get_owner, get_custom,
true,
get_global_properties().parameters.max_authority_depth );
}
//Skip all manner of expiration and TaPoS checking if we're on block 1; It's impossible that the transaction is
//expired, and TaPoS makes no sense as no blocks exist.
if( BOOST_LIKELY(head_block_num() > 0) )
{
if( !(skip & skip_tapos_check) )
{
const auto& tapos_block_summary = block_summary_id_type( trx.ref_block_num )(*this);
//Verify TaPoS block summary has correct ID prefix, and that this block's time is not past the expiration
FC_ASSERT( trx.ref_block_prefix == tapos_block_summary.block_id._hash[1] );
}
fc::time_point_sec now = head_block_time();
FC_ASSERT( trx.expiration <= now + chain_parameters.maximum_time_until_expiration, "",
("trx.expiration",trx.expiration)("now",now)("max_til_exp",chain_parameters.maximum_time_until_expiration));
FC_ASSERT( now <= trx.expiration, "", ("now",now)("trx.exp",trx.expiration) );
}
//Insert transaction into unique transactions database.
if( !(skip & skip_transaction_dupe_check) )
{
create<transaction_object>([&trx_id,&trx](transaction_object& transaction) {
transaction.trx_id = trx_id;
transaction.trx = trx;
});
}
eval_state.operation_results.reserve(trx.operations.size());
const undo_size_restorer undo_guard( _undo_db );
//Finally process the operations
processed_transaction ptrx(trx);
_current_op_in_trx = 0;
_current_virtual_op = 0;
for( const auto& op : ptrx.operations )
{
_current_virtual_op = 0;
eval_state.operation_results.emplace_back(apply_operation(eval_state, op));
++_current_op_in_trx;
}
ptrx.operation_results = std::move(eval_state.operation_results);
//Make sure the temp account has no non-zero balances
const auto& balances = get_index_type< primary_index< account_balance_index > >().get_secondary_index< balances_by_account_index >().get_account_balances( GRAPHENE_TEMP_ACCOUNT );
for( const auto b : balances )
FC_ASSERT(b.second->balance == 0);
return ptrx;
} FC_CAPTURE_AND_RETHROW( (trx) ) }
operation_result database::apply_operation(transaction_evaluation_state& eval_state, const operation& op)
{ try {
int i_which = op.which();
uint64_t u_which = uint64_t( i_which );
FC_ASSERT( i_which >= 0, "Negative operation tag in operation ${op}", ("op",op) );
FC_ASSERT( u_which < _operation_evaluators.size(), "No registered evaluator for operation ${op}", ("op",op) );
unique_ptr<op_evaluator>& eval = _operation_evaluators[ u_which ];
FC_ASSERT( eval, "No registered evaluator for operation ${op}", ("op",op) );
auto op_id = push_applied_operation( op );
auto result = eval->evaluate( eval_state, op, true );
set_applied_operation_result( op_id, result );
return result;
} FC_CAPTURE_AND_RETHROW( (op) ) }
const witness_object& database::validate_block_header( uint32_t skip, const signed_block& next_block )const
{
FC_ASSERT( head_block_id() == next_block.previous, "", ("head_block_id",head_block_id())("next.prev",next_block.previous) );
FC_ASSERT( head_block_time() < next_block.timestamp, "", ("head_block_time",head_block_time())("next",next_block.timestamp)("blocknum",next_block.block_num()) );
const witness_object& witness = next_block.witness(*this);
//DLN: TODO: Temporarily commented out to test shuffle vs RNG scheduling algorithm for witnesses, this was causing shuffle agorithm to fail during create_witness test. This should be re-enabled for RNG, and maybe for shuffle too, don't really know for sure.
if( next_block.timestamp > HARDFORK_SWEEPS_TIME )
FC_ASSERT( secret_hash_type::hash( next_block.previous_secret ) == witness.next_secret_hash, "",
( "previous_secret", next_block.previous_secret )( "next_secret_hash", witness.next_secret_hash ) );
if( !(skip&skip_witness_signature) )
FC_ASSERT( next_block.validate_signee( witness.signing_key ) );
if( !(skip&skip_witness_schedule_check) )
{
uint32_t slot_num = get_slot_at_time( next_block.timestamp );
FC_ASSERT( slot_num > 0 );
witness_id_type scheduled_witness = get_scheduled_witness( slot_num );
FC_ASSERT( next_block.witness == scheduled_witness, "Witness produced block at wrong time",
("block witness",next_block.witness)("scheduled",scheduled_witness)("slot_num",slot_num) );
}
return witness;
}
void database::create_block_summary(const signed_block& next_block)
{
block_summary_id_type sid(next_block.block_num() & 0xffff );
modify( sid(*this), [&](block_summary_object& p) {
p.block_id = next_block.id();
});
}
void database::add_checkpoints( const flat_map<uint32_t,block_id_type>& checkpts )
{
for( const auto& i : checkpts )
_checkpoints[i.first] = i.second;
}
bool database::before_last_checkpoint()const
{
return (_checkpoints.size() > 0) && (_checkpoints.rbegin()->first >= head_block_num());
}
} }