peerplays_migrated/libraries/chain/protocol/transaction.cpp
2019-08-29 17:42:45 +05:30

406 lines
15 KiB
C++

/*
* Copyright (c) 2015 Cryptonomex, Inc., and contributors.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <graphene/chain/exceptions.hpp>
#include <graphene/chain/protocol/fee_schedule.hpp>
#include <fc/io/raw.hpp>
#include <fc/bitutil.hpp>
#include <fc/smart_ref_impl.hpp>
#include <algorithm>
namespace graphene { namespace chain {
digest_type processed_transaction::merkle_digest()const
{
digest_type::encoder enc;
fc::raw::pack( enc, *this );
return enc.result();
}
digest_type transaction::digest()const
{
digest_type::encoder enc;
fc::raw::pack( enc, *this );
return enc.result();
}
digest_type transaction::sig_digest( const chain_id_type& chain_id )const
{
digest_type::encoder enc;
fc::raw::pack( enc, chain_id );
fc::raw::pack( enc, *this );
return enc.result();
}
void transaction::validate() const
{
FC_ASSERT( operations.size() > 0, "A transaction must have at least one operation", ("trx",*this) );
for( const auto& op : operations )
operation_validate(op);
}
graphene::chain::transaction_id_type graphene::chain::transaction::id() const
{
auto h = digest();
transaction_id_type result;
memcpy(result._hash, h._hash, std::min(sizeof(result), sizeof(h)));
return result;
}
const signature_type& graphene::chain::signed_transaction::sign(const private_key_type& key, const chain_id_type& chain_id)
{
digest_type h = sig_digest( chain_id );
signatures.push_back(key.sign_compact(h));
return signatures.back();
}
signature_type graphene::chain::signed_transaction::sign(const private_key_type& key, const chain_id_type& chain_id)const
{
digest_type::encoder enc;
fc::raw::pack( enc, chain_id );
fc::raw::pack( enc, *this );
return key.sign_compact(enc.result());
}
void transaction::set_expiration( fc::time_point_sec expiration_time )
{
expiration = expiration_time;
}
void transaction::set_reference_block( const block_id_type& reference_block )
{
ref_block_num = fc::endian_reverse_u32(reference_block._hash[0]);
ref_block_prefix = reference_block._hash[1];
}
void transaction::get_required_authorities( flat_set<account_id_type>& active, flat_set<account_id_type>& owner, vector<authority>& other )const
{
for( const auto& op : operations )
operation_get_required_authorities( op, active, owner, other );
for( const auto& account : owner )
active.erase( account );
}
struct sign_state
{
/** returns true if we have a signature for this key or can
* produce a signature for this key, else returns false.
*/
bool signed_by( const public_key_type& k )
{
auto itr = provided_signatures.find(k);
if( itr == provided_signatures.end() )
{
auto pk = available_keys.find(k);
if( pk != available_keys.end() )
return provided_signatures[k] = true;
return false;
}
return itr->second = true;
}
optional<map<address,public_key_type>> available_address_sigs;
optional<map<address,public_key_type>> provided_address_sigs;
bool signed_by( const address& a ) {
if( !available_address_sigs ) {
available_address_sigs = std::map<address,public_key_type>();
provided_address_sigs = std::map<address,public_key_type>();
for( auto& item : available_keys ) {
(*available_address_sigs)[ address(pts_address(item, false, 56) ) ] = item;
(*available_address_sigs)[ address(pts_address(item, true, 56) ) ] = item;
(*available_address_sigs)[ address(pts_address(item, false, 0) ) ] = item;
(*available_address_sigs)[ address(pts_address(item, true, 0) ) ] = item;
(*available_address_sigs)[ address(item) ] = item;
}
for( auto& item : provided_signatures ) {
(*provided_address_sigs)[ address(pts_address(item.first, false, 56) ) ] = item.first;
(*provided_address_sigs)[ address(pts_address(item.first, true, 56) ) ] = item.first;
(*provided_address_sigs)[ address(pts_address(item.first, false, 0) ) ] = item.first;
(*provided_address_sigs)[ address(pts_address(item.first, true, 0) ) ] = item.first;
(*provided_address_sigs)[ address(item.first) ] = item.first;
}
}
auto itr = provided_address_sigs->find(a);
if( itr == provided_address_sigs->end() )
{
auto aitr = available_address_sigs->find(a);
if( aitr != available_address_sigs->end() ) {
auto pk = available_keys.find(aitr->second);
if( pk != available_keys.end() )
return provided_signatures[aitr->second] = true;
return false;
}
}
return provided_signatures[itr->second] = true;
}
bool check_authority( account_id_type id )
{
if( approved_by.find(id) != approved_by.end() ) return true;
return check_authority( get_active(id) ) || ( allow_non_immediate_owner && check_authority( get_owner(id) ) );
}
/**
* Checks to see if we have signatures of the active authorites of
* the accounts specified in authority or the keys specified.
*/
bool check_authority( const authority* au, uint32_t depth = 0 )
{
if( au == nullptr ) return false;
const authority& auth = *au;
uint32_t total_weight = 0;
for( const auto& k : auth.key_auths )
if( signed_by( k.first ) )
{
total_weight += k.second;
if( total_weight >= auth.weight_threshold )
return true;
}
for( const auto& k : auth.address_auths )
if( signed_by( k.first ) )
{
total_weight += k.second;
if( total_weight >= auth.weight_threshold )
return true;
}
for( const auto& a : auth.account_auths )
{
if( approved_by.find(a.first) == approved_by.end() )
{
if( depth == max_recursion )
continue;
if( check_authority( get_active( a.first ), depth+1 )
|| ( allow_non_immediate_owner && check_authority( get_owner( a.first ), depth+1 ) ) )
{
approved_by.insert( a.first );
total_weight += a.second;
if( total_weight >= auth.weight_threshold )
return true;
}
}
else
{
total_weight += a.second;
if( total_weight >= auth.weight_threshold )
return true;
}
}
return total_weight >= auth.weight_threshold;
}
bool remove_unused_signatures()
{
vector<public_key_type> remove_sigs;
for( const auto& sig : provided_signatures )
if( !sig.second ) remove_sigs.push_back( sig.first );
for( auto& sig : remove_sigs )
provided_signatures.erase(sig);
return remove_sigs.size() != 0;
}
sign_state( const flat_set<public_key_type>& sigs,
const std::function<const authority*(account_id_type)>& active,
const std::function<const authority*(account_id_type)>& owner,
bool allow_owner,
uint32_t max_recursion_depth = GRAPHENE_MAX_SIG_CHECK_DEPTH,
const flat_set<public_key_type>& keys = flat_set<public_key_type>() )
: get_active(active),
get_owner(owner),
allow_non_immediate_owner(allow_owner),
max_recursion(max_recursion_depth),
available_keys(keys)
{
for( const auto& key : sigs )
provided_signatures[ key ] = false;
approved_by.insert( GRAPHENE_TEMP_ACCOUNT );
}
const std::function<const authority*(account_id_type)>& get_active;
const std::function<const authority*(account_id_type)>& get_owner;
const bool allow_non_immediate_owner;
const uint32_t max_recursion;
const flat_set<public_key_type>& available_keys;
flat_map<public_key_type,bool> provided_signatures;
flat_set<account_id_type> approved_by;
};
void verify_authority( const vector<operation>& ops, const flat_set<public_key_type>& sigs,
const std::function<const authority*(account_id_type)>& get_active,
const std::function<const authority*(account_id_type)>& get_owner,
bool allow_non_immediate_owner,
uint32_t max_recursion_depth,
bool allow_committe,
const flat_set<account_id_type>& active_aprovals,
const flat_set<account_id_type>& owner_approvals )
{ try {
flat_set<account_id_type> required_active;
flat_set<account_id_type> required_owner;
vector<authority> other;
for( const auto& op : ops )
operation_get_required_authorities( op, required_active, required_owner, other );
if( !allow_committe )
GRAPHENE_ASSERT( required_active.find(GRAPHENE_COMMITTEE_ACCOUNT) == required_active.end(),
invalid_committee_approval, "Committee account may only propose transactions" );
sign_state s( sigs, get_active, get_owner, allow_non_immediate_owner, max_recursion_depth );
for( auto& id : active_aprovals )
s.approved_by.insert( id );
for( auto& id : owner_approvals )
s.approved_by.insert( id );
for( const auto& auth : other )
{
GRAPHENE_ASSERT( s.check_authority(&auth), tx_missing_other_auth, "Missing Authority", ("auth",auth)("sigs",sigs) );
}
// fetch all of the top level authorities
for( auto id : required_active )
{
GRAPHENE_ASSERT( s.check_authority(id) ||
s.check_authority(get_owner(id)),
tx_missing_active_auth, "Missing Active Authority ${id}", ("id",id)("auth",*get_active(id))("owner",*get_owner(id)) );
}
for( auto id : required_owner )
{
GRAPHENE_ASSERT( owner_approvals.find(id) != owner_approvals.end() ||
s.check_authority(get_owner(id)),
tx_missing_owner_auth, "Missing Owner Authority ${id}", ("id",id)("auth",*get_owner(id)) );
}
GRAPHENE_ASSERT(
!s.remove_unused_signatures(),
tx_irrelevant_sig,
"Unnecessary signature(s) detected"
);
} FC_CAPTURE_AND_RETHROW( (ops)(sigs) ) }
flat_set<public_key_type> signed_transaction::get_signature_keys( const chain_id_type& chain_id )const
{ try {
auto d = sig_digest( chain_id );
flat_set<public_key_type> result;
for( const auto& sig : signatures )
{
GRAPHENE_ASSERT(
result.insert( fc::ecc::public_key(sig,d) ).second,
tx_duplicate_sig,
"Duplicate Signature detected" );
}
return result;
} FC_CAPTURE_AND_RETHROW() }
set<public_key_type> signed_transaction::get_required_signatures(
const chain_id_type& chain_id,
const flat_set<public_key_type>& available_keys,
const std::function<const authority*(account_id_type)>& get_active,
const std::function<const authority*(account_id_type)>& get_owner,
bool allow_non_immediate_owner,
uint32_t max_recursion_depth )const
{
flat_set<account_id_type> required_active;
flat_set<account_id_type> required_owner;
vector<authority> other;
get_required_authorities( required_active, required_owner, other );
const flat_set<public_key_type>& signature_keys = get_signature_keys(chain_id);
sign_state s( signature_keys, get_active, get_owner, allow_non_immediate_owner, max_recursion_depth, available_keys );
for( const auto& auth : other )
s.check_authority(&auth);
for( auto& owner : required_owner )
s.check_authority( get_owner( owner ) );
for( auto& active : required_active )
s.check_authority( active ) || s.check_authority( get_owner( active ) );
s.remove_unused_signatures();
set<public_key_type> result;
for( auto& provided_sig : s.provided_signatures )
if( available_keys.find( provided_sig.first ) != available_keys.end()
&& signature_keys.find( provided_sig.first ) == signature_keys.end() )
result.insert( provided_sig.first );
return result;
}
set<public_key_type> signed_transaction::minimize_required_signatures(
const chain_id_type& chain_id,
const flat_set<public_key_type>& available_keys,
const std::function<const authority*(account_id_type)>& get_active,
const std::function<const authority*(account_id_type)>& get_owner,
bool allow_non_immediate_owner,
uint32_t max_recursion
) const
{
set< public_key_type > s = get_required_signatures( chain_id, available_keys, get_active, get_owner, max_recursion );
flat_set< public_key_type > result( s.begin(), s.end() );
for( const public_key_type& k : s )
{
result.erase( k );
try
{
graphene::chain::verify_authority( operations, result, get_active, get_owner, allow_non_immediate_owner, max_recursion );
continue; // element stays erased if verify_authority is ok
}
catch( const tx_missing_owner_auth& e ) {}
catch( const tx_missing_active_auth& e ) {}
catch( const tx_missing_other_auth& e ) {}
result.insert( k );
}
return set<public_key_type>( result.begin(), result.end() );
}
void signed_transaction::verify_authority(
const chain_id_type& chain_id,
const std::function<const authority*(account_id_type)>& get_active,
const std::function<const authority*(account_id_type)>& get_owner,
bool allow_non_immediate_owner,
uint32_t max_recursion )const
{ try {
graphene::chain::verify_authority( operations,
get_signature_keys( chain_id ),
get_active,
get_owner,
allow_non_immediate_owner,
max_recursion );
} FC_CAPTURE_AND_RETHROW( (*this) ) }
} } // graphene::chain