peerplays-fc/src/crypto/ripemd160.cpp
2018-03-13 22:00:18 +01:00

114 lines
3.2 KiB
C++

#include <fc/crypto/hex.hpp>
#include <fc/fwd_impl.hpp>
#include <openssl/sha.h>
#include <openssl/ripemd.h>
#include <string.h>
#include <fc/crypto/ripemd160.hpp>
#include <fc/crypto/sha512.hpp>
#include <fc/crypto/sha256.hpp>
#include <fc/variant.hpp>
#include <vector>
#include "_digest_common.hpp"
namespace fc
{
ripemd160::ripemd160() { memset( _hash, 0, sizeof(_hash) ); }
ripemd160::ripemd160( const string& hex_str ) {
fc::from_hex( hex_str, (char*)_hash, sizeof(_hash) );
}
string ripemd160::str()const {
return fc::to_hex( (char*)_hash, sizeof(_hash) );
}
ripemd160::operator string()const { return str(); }
char* ripemd160::data()const { return (char*)&_hash[0]; }
class ripemd160::encoder::impl {
public:
impl()
{
memset( (char*)&ctx, 0, sizeof(ctx) );
}
RIPEMD160_CTX ctx;
};
ripemd160::encoder::~encoder() {}
ripemd160::encoder::encoder() {
reset();
}
ripemd160 ripemd160::hash( const fc::sha512& h )
{
return hash( (const char*)&h, sizeof(h) );
}
ripemd160 ripemd160::hash( const fc::sha256& h )
{
return hash( (const char*)&h, sizeof(h) );
}
ripemd160 ripemd160::hash( const char* d, uint32_t dlen ) {
encoder e;
e.write(d,dlen);
return e.result();
}
ripemd160 ripemd160::hash( const string& s ) {
return hash( s.c_str(), s.size() );
}
void ripemd160::encoder::write( const char* d, uint32_t dlen ) {
RIPEMD160_Update( &my->ctx, d, dlen);
}
ripemd160 ripemd160::encoder::result() {
ripemd160 h;
RIPEMD160_Final((uint8_t*)h.data(), &my->ctx );
return h;
}
void ripemd160::encoder::reset() {
RIPEMD160_Init( &my->ctx);
}
ripemd160 operator << ( const ripemd160& h1, uint32_t i ) {
ripemd160 result;
fc::detail::shift_l( h1.data(), result.data(), result.data_size(), i );
return result;
}
ripemd160 operator ^ ( const ripemd160& h1, const ripemd160& h2 ) {
ripemd160 result;
result._hash[0] = h1._hash[0] ^ h2._hash[0];
result._hash[1] = h1._hash[1] ^ h2._hash[1];
result._hash[2] = h1._hash[2] ^ h2._hash[2];
result._hash[3] = h1._hash[3] ^ h2._hash[3];
result._hash[4] = h1._hash[4] ^ h2._hash[4];
return result;
}
bool operator >= ( const ripemd160& h1, const ripemd160& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) >= 0;
}
bool operator > ( const ripemd160& h1, const ripemd160& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) > 0;
}
bool operator < ( const ripemd160& h1, const ripemd160& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) < 0;
}
bool operator != ( const ripemd160& h1, const ripemd160& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) != 0;
}
bool operator == ( const ripemd160& h1, const ripemd160& h2 ) {
return memcmp( h1._hash, h2._hash, sizeof(h1._hash) ) == 0;
}
void to_variant( const ripemd160& bi, variant& v, uint32_t max_depth )
{
to_variant( std::vector<char>( (const char*)&bi, ((const char*)&bi) + sizeof(bi) ), v, max_depth );
}
void from_variant( const variant& v, ripemd160& bi, uint32_t max_depth )
{
std::vector<char> ve = v.as< std::vector<char> >( max_depth );
memset( &bi, char(0), sizeof(bi) );
if( ve.size() )
memcpy( &bi, ve.data(), fc::min<size_t>(ve.size(),sizeof(bi)) );
}
} // fc